Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: Implication of endothelial functions of plasma conjugated metabolites

Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa, Osaka 555-8502, Japan.
Food & function 02/2012; 3(4):389-98. DOI: 10.1039/c2fo10224b
Source: PubMed


Hesperetin is an aglycone of citrus flavonoids and is expected to exert a vasodilatation effect in vivo. We developed water-dispersible hesperetin by the process of micronization to enhance the bioavailability of hesperetin. This study aimed to assess the effect of this process on the bioavailability of hesperetin and to estimate its efficiency on vasodilatation-related functions using endothelial cells in vitro and a human volunteer study at a single dose in vivo. We found that water-dispersible hesperetin was absorbed rapidly, with its maximum plasma concentration (C(max)) being 10.2 ± 1.2 μM, and that the time to reach C(max), which is within 1 h if 150 mg of this preparation was orally administered in humans. LC-MS analyses of the plasma at C(max) demonstrated that hesperetin accumulated in the plasma as hesperetin 7-O-β-D-glucuronide (Hp7GA), hesperetin 3'-O-β-D-glucuronide (Hp3'GA) and hesperetin sulfate exclusively. Similar to hesperetin, Hp7GA enhanced nitric oxide (NO) release by inhibiting nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity in a human umbilical vein endothelial cell culture system, indicating that plasma hesperetin metabolites can improve vasodilatation in the vascular system. A volunteer study using women with cold sensitivity showed that a single dose of water-dispersible hesperetin was effective on peripheral vasodilatation.These results strongly suggest that rapid accumulation with higher plasma concentration enables hesperetin to exert a potential vasodilatation effect by the endothelial action of its plasma metabolites. Water-dispersible hesperetin may be useful to improve the health effect of dietary hesperetin.

29 Reads
  • Source
    • "Several attempts have been carried out to enhance the bioavailability of such flavonoids for example removal of rhamnose from the rutinose moiety of hesperidin, a flavonoid structurally related to diosmin, commonly found in Citrus sinensis fruits. Following oral administration in healthy volunteers, the aglycone was highly bioavailable [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Diosmin is a naturally occurring flavonoid present in citrus fruits and other plants belonging to the Rutaceae family. It is used for the treatment of chronic venous insufficiency (CVI) for its pheblotonic and vaso-active properties, safety and tolerability as well. The aim of the current in vivo study was to investigate the pharmacokinetic profile of a branded micronized diosmin (μSMIN Plus™) compared with plain micronized diosmin in male Sprague-Dawley rats. After oral administration by gastric gavage, blood samples were collected via jugular vein catheters at regular time intervals from baseline up to 24 hours. Plasma concentrations were assessed by LC/MS. For each animal, the following pharmacokinetic parameters were calculated using a non-compartmental analysis: maximum plasma drug concentration (Cmax), time to reach max (Tmax), area under the plasma concentration-time curve (AUC0-last), elimination half-life (t1/2), and relative oral bioavailability (%F). The results of the current study clearly showed an improvement in the pharmacokinetic parameters in animals treated with μSMIN Plus™ compared with animals treated with micronized diosmin. In particular, μSMIN Plus™ showed a 4-fold increased bioavailability compared with micronized diosmin. In conclusion, the results from the current study provided a preliminary pharmacokinetic profile for μSMIN Plus™, which may represent a new tool for CVI management.
    Full-text · Article · Aug 2015 · Natural product communications
  • Source

    Full-text · Article · Mar 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Orally ingested hesperidin (HES) is hydrolyzed into hesperetin in the gastrointestinal tract and conjugated during absorption. Hesperetin conjugates are the main circulating metabolites in human and rat plasma. We previously reported that glucosyl hesperidin (GHES), a water-soluble HES derivative, prevents hypertension via improvement of endothelial dysfunction in spontaneously hypertensive rats (SHRs). Although these hesperetin conjugates seem to be responsible for hypotensive and endothelium-dependent vasodilatory activities of dietary GHES, little is known about the mechanisms of action of these conjugated metabolites. Therefore, the aim of the present study was to investigate the effects of hesperetin-7-O-β-d-glucuronide (HPT7G) and hesperetin-3'-O-β-d-glucuronide (HPT3'G), which are the predominant HES metabolites in rat plasma, on blood pressure and endothelial function. Intravenous administration of HPT7G (5 mg kg(-1)) decreased blood pressure in anesthetized SHRs. HPT7G enhanced endothelium-dependent vasodilation in response to acetylcholine, but had no effect on endothelium-independent vasodilation in response to sodium nitroprusside (SNP) in aortas isolated from SHRs. HPT7G decreased hydrogen peroxide-induced intracellular adhesion molecule-1 and monocyte chemoattractant protein-1 mRNA expression in rat aortic endothelial cells. In contrast, HPT3'G had little effect on these parameters. In conclusion, HPT7G exerted hypotensive, vasodilatory and anti-inflammatory activities, similar to hesperetin and these effects are associated, in part, with the activity of GHES and HES to improve hypertension and endothelial dysfunction.
    No preview · Article · Jul 2013
Show more