Article

Inhibition of Copper Uptake in Yeast Reveals the Copper Transporter Ctr1p As a Potential Molecular Target of Saxitoxin

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Saxitoxin is a secondary metabolite produced by several species of dinoflagellates and cyanobacteria which targets voltage-gated sodium and potassium channels in higher vertebrates. However, its molecular target in planktonic aquatic community members that co-occur with the toxin producers remains unknown. Previous microarray analysis with yeast identified copper and iron-homeostasis genes as being differentially regulated in response to saxitoxin. This study sought to identify the molecular target in microbial cells by comparing the transcriptional profiles of key copper and iron homeostasis genes (CTR1, FRE1, FET3, CUP1, CRS5) in cells exposed to saxitoxin, excess copper, excess iron, an extracellular Cu(I) chelator, or an intracellular Cu(I) chelator. Protein expression and localization of Ctr1p (copper transporter), Fet3p (multicopper oxidase involved in high-affinity iron uptake), and Aft1p (iron regulator) were also compared among treatments. Combined transcript and protein profiles suggested saxitoxin inhibited copper uptake. This hypothesis was confirmed by intracellular Cu(I) imaging with a selective fluorescent probe for labile copper. On the basis of the combined molecular and physiological results, a model is presented in which the copper transporter Ctr1p serves as a molecular target of saxitoxin and these observations are couched in the context of the eco-evolutionary role this toxin may serve for species that produce it.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Toxins can function as organic ligands, complexing with metals and/or interacting with membrane proteins involved in trace metal assimilation (Humble et al. 1997;Wells et al. 2002;Moeller et al. 2007;Cusick et al. 2012;Facey et al. 2019;Chen et al. 2020). It was observed that the addition of saxitoxin (STX) in cultures of Saccharomyces cerevisiae (Cusick et al. 2012) and Chlamydomonas reinhardtii (Cusick et al. 2013), under 20 and 8 μmol L −1 of Cu 2+ conditions, respectively, prevented the cellular uptake of Cu 2+ ions, through the binding of STX molecules to Cu 2+ membrane transporters, alleviating cellular toxicity (Cusick et al. 2013). ...
... Toxins can function as organic ligands, complexing with metals and/or interacting with membrane proteins involved in trace metal assimilation (Humble et al. 1997;Wells et al. 2002;Moeller et al. 2007;Cusick et al. 2012;Facey et al. 2019;Chen et al. 2020). It was observed that the addition of saxitoxin (STX) in cultures of Saccharomyces cerevisiae (Cusick et al. 2012) and Chlamydomonas reinhardtii (Cusick et al. 2013), under 20 and 8 μmol L −1 of Cu 2+ conditions, respectively, prevented the cellular uptake of Cu 2+ ions, through the binding of STX molecules to Cu 2+ membrane transporters, alleviating cellular toxicity (Cusick et al. 2013). A similar result was found in the diatom P. multiseries, which improved cell growth in response to the addition of toxin DA under a Cu 2+ -stressed condition . ...
... A similar result was found in the diatom P. multiseries, which improved cell growth in response to the addition of toxin DA under a Cu 2+ -stressed condition . Consequently, these facts led to the hypothesis that toxins may be produced in response to high metal concentration in order to decrease metal toxicity that affects cyanobacteria and microalgae, as a detoxification process Baptista and Vasconcelos 2006;Cusick et al. 2012;Nogueira et al. 2012;Tonietto et al. 2014;Facey et al. 2019). ...
Article
Full-text available
Copper (Cu2+) is an essential micronutrient for cyanobacteria, but it has a toxic effect above a certain threshold. The presence of Cu2+ in water is usually related to human activity due to it being used in pesticides, fertilizer, and algaecides. Previous studies observed that high Cu2+ concentrations stimulated toxin synthesis in cyanobacteria and microalgae. Furthermore, saxitoxins (STXs) can bind to Cu2+ transporters in microorganisms, decreasing the Cu2+ uptake and consequently reducing Cu toxicity. Therefore, considering the invasive capacity of the cyanobacterium Raphidiopsis raciborskii and its potential for STXs production, this study aimed to evaluate the effects of different Cu2+ concentrations in the production of STXs and growth of R. raciborskii. In acclimatized growth conditions, cultures of R. raciborskii strain (ITUC01) were exposed to four different copper concentrations for 20 days (0.8, 8, 80, and 800 × 10−3 μmol L−1 of CuCl2). Raphidiopsis raciborskii growth and physiological responses were evaluated measuring the cell concentration, cell volume, biovolume, chlorophyll a levels, and STXs concentration. Comparing the lowest and highest Cu2+ concentration (0.8 and 800 × 10−3 μmol L−1), it was observed that the increment of Cu2+ in the medium led to a reduced maximum growth rate (μmax), cell concentration, biovolume, and chlorophyll a levels, while the cell volume increased. Despite the low cell concentration and biovolume in the highest Cu2+ condition, it was observed that the STXs volumetric concentration was significantly high on day 5, which is indicative of the fact that increased Cu2+ concentration might induce STXs production in early growth. In addition, our results revealed that STXs production was uncoupled with growth and a reduction of R. raciborskii toxicity from day 5 to 20 was observed. Therefore, the present study identified some of the survival responses of R. raciborskii in Cu-stressed condition and suggested that Cu2+ might be one of the factors that can affect R. raciborskii bloom toxicity.
... Known targets of saxitoxin include the sodium [1], calcium [4], and potassium [5] channels; saxiphilin, a soluble protein isolated from bullfrog (Rana catesbeiana) and a member of the Fe(III)-binding transferrin family of proteins [6,7]; and a soluble glycoprotein purified from pufferfish (Fugu parda- lis) [8]. Recently, it has been demonstrated that saxitoxin inhibits copper uptake in yeast, indicating that the copper transporter may also serve as a molecular target of PSTs [9]. To date, limited data exist as to the molecular target(s) of PSTs on the phytoplankton community co-occurring with the toxin-producing species. ...
... Therefore, model systems can provide a means for obtaining baseline molecular data for research areas with challenges such as highly toxic compounds or limited reference sequences. Prior work with the yeast system demonstrated that exposure to saxitoxin produced a molecular signature similar to that of copper inhibition [9]. The present study sought to determine whether the mode of action observed in yeast on exposure to saxitoxin extended to more environmentally relevant organisms, such as those found in aquatic habitats (i.e., phytoplankton and other algae). ...
Article
Paralytic shellfish toxins are secondary metabolites produced by several species of dinoflagellates and cyanobacteria. Known targets of these toxins, which typically occur at detrimental concentrations during harmful algal blooms, include voltage-gated ion channels in humans and mammals. However, the effects of the toxins on the co-occurring phytoplankton community remain unknown. The present study examined the molecular mechanisms of the model photosynthetic alga Chlamydomonas reinhardtii in response to saxitoxin exposure as a means of gaining insights into the phytoplankton community response to a bloom. Previous work with yeast indicated that saxitoxin inhibited copper uptake, and so experiments were designed to examine whether saxitoxin exhibited a similar mode of action in algae. Expression profiling following exposure to saxitoxin or a copper chelator produced similar profiles in copper homeostasis genes, notably the induction of the cytochrome c6 (CYC6) and copper transporter (COPT1, CTR1) genes. Cytochrome c6 is used as an alternative to plastocyanin under conditions of copper deficiency, and immunofluorescence data showed this protein to be present in a significantly greater proportion of saxitoxin-exposed cells compared to controls. Live-cell imaging with a copper sensor probe for intracellular labile Cu(I) confirmed that saxitoxin blocked copper uptake. Extrapolations of these data to phytoplankton metabolic processes along with the copper transporter as a molecular target of saxitoxin based on existing structural models are discussed. Environ. Toxicol. Chem. © 2013 SETAC.
... Saccharomyces cerevisiae is one of the most widely used eukaryotic model organisms. S. cerevisiae BY4741 cells were grown in YPD broth (1% yeast extract, 2% peptone and 2% dextrose) [58,59]. After overnight incubation, 10 8 /mL yeast cells were passed with 0.85% NaCl, added with 50 μM sensor 2 for 30 min and washed once with 0.85% NaCl containing 200 μM EDTA to remove extracellular Cu 2+ . ...
... When the cells were treated with EDTA, a cell-impermeable metal chelator, to deplete extracellular Zn ions (43), or with N,N,N ,Ntetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN), a cell-permeable Zn chelator (44,45), transcriptional induction of Haa1 target genes TPO2 and TDA6 decreased during acetic acid stress compared with the untreated control ( Figure 1B and Supplementary Figure S1). However, in agreement with previous studies (28,46), treatment with bathocuproine disulfonic acid (BCS), a cell-impermeable Cu-specific chelator, did not have a significant effect ( Figure 1B and Supplementary Figure S1). We also tested the effects of the metal chelators on the DNA binding activity of Haa1 using ChIP assays. ...
Article
Full-text available
In Saccharomyces cerevisiae, Haa1 and War1 transcription factors are involved in cellular adaptation against hydrophilic weak acids and lipophilic weak acids, respectively. However, it is unclear how these transcription factors are differentially activated depending on the identity of the weak acid. Using a field-effect transistor (FET)-type biosensor based on carbon nanofibers, in the present study we demonstrate that Haa1 and War1 directly bind to various weak acid anions with different affinities. Haa1 is most sensitive to acetate, followed by lactate, whereas War1 is most sensitive to benzoate, followed by sorbate, reflecting their differential activation during weak acid stresses. We show that DNA binding by Haa1 is induced in the presence of acetic acid and that the N-terminal Zn-binding domain is essential for this activity. Acetate binds to the N-terminal 150-residue region, and the transcriptional activation domain is located between amino acid residues 230 and 483. Our data suggest that acetate binding converts an inactive Haa1 to the active form, which is capable of DNA binding and transcriptional activation.
... STX and its analogs target the voltage-gated sodium channel, causing a reversible blockage of the channels and thus a blockage of membrane depolarization preventing transmission of action potential in excitable cells (Jost et al., 2008;Huang et al., 2010). Recent studies have also shown that STX additionally targets voltage-gated potassium and calcium channels, and even copper transport ers (Cusick et al., 2012). It partially blocks the voltage-gated calcium channels, resulting in an influx of calcium ions that initiates contraction, secretion, neurotransmission, and other intra cellular regulatory events (Catterall, 2000;Zakon, 2012). ...
Chapter
Coastal marine ecosystems are subjected to environmental changes related to human activities and climate change. Harmful algal blooms (HAB) are considered a major threat to marine coastal areas due to the wide range of impacts they have on the ecology of coastal marine ecosystems. There are several shellfish‐mediated intoxications involved in human poisoning worldwide caused by HAB. Shellfish poisonings are classified with respect to their bioactivity or to the symptoms caused in humans: paralytic shellfish toxins (PST), diarrheic toxins (DST), neurotoxic toxins (NST), amnesic toxins (AST), azaspiracid toxins (AZA), yessotoxins (YTX) and so on. This chapter focuses mainly on Dinophysis species as the major producers of okadaic acid (OA) and its analogs. It presents the maximum levels of paralytic shellfish toxins recorded in shellfish from North America. The chapter also presents the maximum levels of domoic acid in shellfish from North America. HAB can also impact the reproduction and recruitment of shellfish.
... It is not surprising, with the complexity of biological systems, that there is not a one-size-fits-all chemical tool for all applications; as such, it is critical to implement both chemical and biological controls when using a given chemical probe for a given biological model. Indeed, with proper controls in place, CS1 has been employed as a pilot screening tool for assessing fluctuations in labile copper pools in bacteria, 153 yeast, [154][155][156] plant, 157 and mammalian systems. 158 Inspired by work by Nagano on treating fluorescent sensors as electron-transfer cassettes, 159 we developed a next-generation Coppersensor-3 (CS3, Figure 6) probe by replacing the fluoro substituents on the BODIPY core with methoxy substituents to improve its brightness (Φ = 0.40 for CS3 vs Φ = 0.13 for CS1) and signal-to-noise response to Cu + (75-fold turn-on for CS3 vs 10-fold for CS1). ...
... These observations point to the fact that there is no one-size-fits-all chemical probe for every biological model, and therefore characterization of the sensor in its intended biological or environmental system of use is necessary. Indeed, when used in combination with complementary techniques, such as direct metal detection via inductively coupled plasma mass spectrometry (ICP-MS) and biochemical assays like DNA microarrays and protein profiling, CS1 has been applied to study copper dynamics in a wide range of bacterial, [88] plant, [89] and yeast [90][91][92] models of copper accumulation and misregulation. ...
Article
Copper is an essential element in biological systems. Its potent redox activity renders it necessary for life, but at the same time, misregulation of its cellular pools can lead to oxidative stress implicated in aging and various disease states. Copper is commonly thought of as a static cofactor buried in protein active sites; however, evidence of a more loosely bound, labile pool of copper has emerged. To help identify and understand new roles for dynamic copper pools in biology, we have developed selective molecular imaging agents for this metal, drawing inspiration from both biological binding motifs and synthetic model complexes that reveal thioether coordination as a general design strategy for selective and sensitive copper recognition. In this review, we summarize some contributions, primarily from our own laboratory, on fluorescence- and magnetic resonance-based molecular-imaging probes for studying copper in living systems using thioether coordination chemistry.
... The ability of CS1 to reversibly detect changes in labile copper in HEK293T cells was independently validated in a subsequent study, 122 but application to detect labile Cu(I) changes in M17, U87MG, SH-SY5Y or CHO cell lines upon treatment with CuCl 2 or Cu(gtsm) were unsuccessful, reiterating a basic fact that a single chemical reagent cannot be used with the same efficacy in all biological sample types. Indeed, the first-generation CS1 probe has been employed effectively by other laboratories to investigate hyperaccumulation and misregulation of copper homeostasis in various bacterial, 123 yeast, [124][125][126] and plant 127 models as a complementary technique to ICP-MS and traditional biochemical assays (Figure 4). For example, studies by Grass and co-workers show that increases in CS1 fluorescence are observed in bacterial 123 or yeast 124 upon exposure to copper surfaces, but not control stainless steel surfaces. ...
Article
The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals.
... The longestablished, primary target of STX and its derivatives is the voltagegated sodium channel (Cestele and Catterall, 2000) to which STX binds with high affinity blocking the inward flow of sodium ions into the cell eventually causing paralysis (Catterall, 2000;Llewellyn, 2006). Recent studies have shown, however, that STX has additional molecular targets including voltage-gated potassium and calcium channels, and even copper transporters (Cusick et al., 2012). Similar to its interactions with sodium channels, STX partially blocks the voltage-gated calcium channels which are the key signal transducers of electrical signaling, converting depolarization of the cell membrane to an influx of calcium ions that initiates contraction, secretion, neurotransmission, and other intracellular regulatory events (Catterall, 2000;Zakon, 2012). ...
... The longestablished , primary target of STX and its derivatives is the voltagegated sodium channel (Cestele and Catterall, 2000) to which STX binds with high affinity blocking the inward flow of sodium ions into the cell eventually causing paralysis (Catterall, 2000; Llewellyn, 2006). Recent studies have shown, however, that STX has additional molecular targets including voltage-gated potassium and calcium channels, and even copper transporters (Cusick et al., 2012). Similar to its interactions with sodium channels, STX partially blocks the voltage-gated calcium channels which are the key signal transducers of electrical signaling, converting depolarization of the cell membrane to an influx of calcium ions that initiates contraction, secretion, neurotransmission, and other intracellular regulatory events (Catterall, 2000; Zakon, 2012). ...
... Encouraged by these findings, we sought to probe loosely bound copper pools in higher neuronal tissue models and study their roles in regulating neural circuits under basal conditions with a molecular imaging approach. However, initial attempts to use CS3 and other available copper indicators to reliably visualize labile copper stores in tissue were unsuccessful, despite their utility in a wide range of cell culture models (29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41). We speculated that the relative hydrophobicity of BODIPY dyes could potentially limit their utility in thicker biological specimens due to localization and aggregation effects (30,42,43). ...
Article
Full-text available
Significance Copper is traditionally regarded as a static, tightly bound cofactor in enzymes, but emerging data link more-loosely bound pools to cell signaling. Here we use molecular imaging to identify a role for copper in the brain as a modulator of spontaneous activity of developing neural circuits. First, we directly visualized a labile, loosely bound copper pool in hippocampal neurons and retinal tissue with a newly developed Copper Fluor-3 (CF3) indicator. We then used two-photon calcium imaging as readout of spontaneous activity to show that disruption of labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the frequency and spatial propagation of neural activity. The results establish the requirement for copper in a fundamental, dynamic property of brain circuitry.
... The copper transporter has also recently been proposed as an additional molecular target of saxitoxin. A series of studies conducted with yeast and the photosynthetic green alga, Chlamydomonas reinhardtii, demonstrated that exposure to saxitoxin inhibited copper uptake in both species [45]. Both possess high-affinity copper uptake systems in which the copper transporter plays a significant role [46][47][48][49]. ...
Article
Full-text available
Marine neurotoxins are natural products produced by phytoplankton and select species of invertebrates and fish. These compounds interact with voltage-gated sodium, potassium and calcium channels and modulate the flux of these ions into various cell types. This review provides a summary of marine neurotoxins, including their structures, molecular targets and pharmacologies. Saxitoxin and its derivatives, collectively referred to as paralytic shellfish toxins (PSTs), are unique among neurotoxins in that they are found in both marine and freshwater environments by organisms inhabiting two kingdoms of life. Prokaryotic cyanobacteria are responsible for PST production in freshwater systems, while eukaryotic dinoflagellates are the main producers in marine waters. Bioaccumulation by filter-feeding bivalves and fish and subsequent transfer through the food web results in the potentially fatal human illnesses, paralytic shellfish poisoning and saxitoxin pufferfish poisoning. These illnesses are a result of saxitoxin's ability to bind to the voltage-gated sodium channel, blocking the passage of nerve impulses and leading to death via respiratory paralysis. Recent advances in saxitoxin research are discussed, including the molecular biology of toxin synthesis, new protein targets, association with metal-binding motifs and methods of detection. The eco-evolutionary role(s) PSTs may serve for phytoplankton species that produce them are also discussed.
... However, these studies are subject to speculation, where PSTs could be synthesized as a chemical defense mechanism and/ or for ion transport facilitation and regulatory interactions [17]. Recently, an interaction between STX and the copper transporter Ctr1p has been proposed, suggesting that STX inhibited copper uptake [18]. In previous work, we established a relationship between the extracellular levels of Na + and the export of PSTs in the cyanobacterium Raphidiopsis brookii D9 [19]. ...
Article
Full-text available
Paralytic shellfish poisoning toxins (PSTs) are a family of more than 30 natural alkaloids synthesized by dinoflagellates and cyanobacteria whose toxicity in animals is mediated by voltage-gated Na channel blocking. The export of PST analogues may be through SxtF and SxtM, two putative MATE (multidrug and toxic compound extrusion) family transporters encoded in PSTs biosynthetic gene cluster (). is present in every cluster analyzed; however, is only present in the clade. These transporters are energetically coupled with an electrochemical gradient of proton (H) or sodium (Na) ions across membranes. Because the functional role of PSTs remains unknown and methods for genetic manipulation in PST-producing organisms have not yet been developed, protein structure analyses will allow us to understand their function. By analyzing the cluster of eight PST-producing cyanobacteria, we found no correlation between the presence of or and a specific PSTs profile. Phylogenetic analyses of SxtF/M showed a high conservation of SxtF in the clade, suggesting conserved substrate affinity. Two domains involved in Na and drug recognition from NorM proteins (MATE family) of and are present in SxtF/M. The Na recognition domain was conserved in both SxtF/M, indicating that Na can maintain the role as a cation anti-transporter. Consensus motifs for toxin binding differed between SxtF and SxtM implying differential substrate binding. Through protein modeling and docking analysis, we found that there is no marked affinity between the recognition domain and a specific PST analogue. This agrees with our previous results of PST export in D9, where we observed that the response to Na incubation was similar to different analogues. These results reassert the hypothesis regarding the involvement of Na in toxin export, as well as the motifs LXGLQD (SxtM) and LVGLRD (SxtF) in toxin recognition.
Article
Dinoflagellates are an ecologically important group of marine microbial eukaryotes with a remarkable array of adaptive strategies. It is ironic that two of the traits for which dinoflagellates are best known, toxin production and bioluminescence, are rarely linked when considering the ecological significance of either. Although dinoflagellate species that form some of the most widespread and frequent harmful algal blooms (HABs) are bioluminescent, the molecular and eco-evolutionary associations between these two traits has received little attention. Here, the major themes of biochemistry and genetics, ecological functions, signaling mechanisms, and evolution are addressed, with parallels and connections drawn between the two. Of the 17 major classes of dinoflagellate toxins, only two are produced by bioluminescent species: saxitoxin (STX) and yessotoxin. Of these, STX has been extensively studied, including the identification of the STX biosynthetic genes. While numerous theories have been put forward as to the eco-evolutionary roles of both bioluminescence and toxicity, a general consensus is that both function as grazing deterrents. Thus, both bioluminescence and toxicity may aid in HAB initiation as they alleviate grazing pressure on the HAB species. A large gap in our understanding is the genetic variability among natural bloom populations, as both toxic and non-toxic strains have been isolated from the same geographic location. The same applies to bioluminescence, as there exist both bioluminescent and non-bioluminescent strains of the same species. Recent evidence demonstrating that blooms are not monoclonal events necessitates a greater level of understanding as to the genetic variability of these traits among sub-populations as well as the mechanisms by which cells acquire or lose the trait, as sequence analysis of STX+ and STX- species indicate the key gene required for toxicity is lost rather than gained. While the extent of genetic variability for both bioluminescence and toxicity among natural HAB sub-populations remains unknown, it is an area that needs to be explored in order to gain greater insights into the molecular mechanisms and environmental parameters driving HAB evolution.
Article
Copper is an essential nutrient for sustaining life, and emerging data have expanded the roles of this metal in biology from its canonical functions as a static enzyme cofactor to dynamic functions as a transition metal signal. At the same time, loosely bound, labile copper pools can trigger oxidative stress and damaging events that are detrimental if misregulated. The signal/stress dichotomy of copper motivates the development of new chemical tools to study its spatial and temporal distributions in native biological contexts such as living cells. Here, we report a family of fluorescent copper sensors built upon carbon-, silicon-, and phosphorus-substituted rhodol dyes that enable systematic tuning of excitation/emission colors from orange to near-infrared. These probes can detect changes in labile copper levels in living cells upon copper supplementation and/or depletion. We demonstrate the ability of the carbon–rhodol based congener, Copper Carbo Fluor 1 (CCF1), to identify elevations in labile copper pools in the Atp7a–/– fibroblast cell model of the genetic copper disorder Menkes disease. Moreover, we showcase the utility of the red-emitting phosphorus-rhodol based dye Copper Phosphorus Fluor 1 (CPF1) in dual-color, dual-analyte imaging experiments with the green-emitting calcium indicator Calcium Green-1 to enable simultaneous detection of fluctuations in copper and calcium pools in living cells. The results provide a starting point for advancing tools to study the contributions of copper to health and disease and for exploiting the rapidly growing palette of heteroatom-substituted xanthene dyes to rationally tune the optical properties of fluorescent indicators for other biologically important analytes.
Article
Exposure of the toxin-producing dinoflagellate Alexandrium catenella (A. catenella) was previously demonstrated to cause apoptosis of hemocytes in the oyster species Crassostrea gigas. In this work, a coumarin-labeled saxitoxin appeared to spread throughout the cytoplasm of the hemocytes. PSTs, including saxitoxin, were also shown to be directly responsible for inducing apoptosis in hemocytes, a process dependent on caspase activation and independent of reactive oxygen species (ROS) production. A series of in vitro labeling and microscopy experiments revealed that STX and analogs there of induced nuclear condensation, phosphatidylserine exposure, membrane permeability, and DNA fragmentation of hemocytes. Unlike in vertebrates, gonyautoxin-5 (GTX5), which is present in high concentrations in A. catenella, was found to be more toxic than saxitoxin (STX) to oyster immune cells. Altogether, results show that PSTs produced by toxic dinoflagellates enter the cytoplasm and induce apoptosis of oyster immune cells through a caspase-dependent pathway. Because of the central role of hemocytes in mollusc immune defense, PST-induced death of hemocytes could negatively affect resistance of bivalve molluscs to microbial infection.
Article
Full-text available
Biomedical research has moved on from the study of the structure of organs, cells and organelles. Today, the key questions that must be addressed to understand the body in health and disease are related to fundamental biochemistry: the distribution and speciation of chemicals, the regulation of chemical reactions, and the control of chemical environments. To see advances in this field, it is essential for analytical chemists to actively engage in this process, from beginning to end. In this Feature Article, we review the progress that has been made towards gaining an understanding of the chemistry of the body, while commenting on the intrinsic disconnect between new innovations in the field of analytical chemistry and practical application within the biosciences. We identify the challenges that prevent chemists from making a greater impact in this field, and highlight key steps for moving forward.
Article
Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the "cuprosome" as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals.
Article
Quaternary ammonium compounds (QACs) have represented one of the most visible and effective classes of disinfectants for nearly a century. With simple preparation, wide structural variety, and versatile incorporation into consumer products, there have been manifold developments and applications of these structures. Generally operating via disruption of one of the most fundamental structures in bacteria - the cell membrane - leading to cell lysis and bacterial death, the QACs were once thought to be impervious to resistance. Developments over the past decades, however, have shown this to be far from the truth. It is now known that a large family of bacterial genes (generally termed qac genes) encode efflux pumps capable of expelling many QAC structures from bacterial cells, leading to a decrease in susceptibility to QACs; methods of regulation of qac transcription are also understood. Importantly, qac genes can be horizontally transferred via plasmids to other bacteria, and are often transmitted alongside other antibiotic resistance genes; this dual threat represents a significant danger to human health. In this review, both QAC development and QAC resistance are documented, and possible strategies for addressing and overcoming QAC-resistant bacteria are discussed.
Article
Full-text available
We investigated the presence of plasmalemma-bound copper-containing oxidases associated with the inducible iron (Fe) transport system in two diatoms of the genus Thalassiosira. Under Fe-limiting conditions, Thalassiosira oceanica, an oceanic isolate, was able to enzymatically oxidize inorganic Fe(II) extracellularly. This oxidase activity was dependent on copper (Cu) availability and diminished by exposure to a multi-Cu oxidase (MCO) inhibitor. The rates of Fe uptake from ferrioxamine B by Fe-limited T oceanica were also dependent on Cu availability in the growth media. The effects of Cu limitation on Fe(II) oxidation and Fe uptake from ferrioxamine B were partially reversed after a short exposure to a Cu addition, indicating that the putative oxidases contain Cu. Limited physiological experiments were also performed with the coastal diatom Thalassiosira pseudonana and provided some evidence for putative Cu-containing oxidases in the high-affinity Fe transport system of this isolate. To support these preliminary physiological data, we searched the newly available T pseudonana genome for a multi-Cu-containing oxidase gene and, using real-time polymerase chain reaction (PCR), quantified its expression under various Fe and Cu levels. We identified a putative MCO gene with predicted transmembrane domains and found that transcription levels of this gene were significantly elevated in Fe-limited cells relative to Fe-replete cells. These data collectively suggest that putative MCOs are part of the inducible Fe transport system of Fe-limited diatoms, which act to oxidize Fe(II) following reductive dissociation of Fe(III) from strong organic complexes.
Article
Full-text available
We investigated the effects of copper (Cu) and iron (Fe) availability on the growth rates, cellular Cu content, and steady-state Cu uptake rates of eight species of centric diatoms (coastal and oceanic strains). Whereas Fe and Cu availability had a significant effect on the growth rates of both costal and oceanic diatoms, an interaction between Fe and Cu availability and growth rates was only observed for the oceanic diatoms. Determination of cellular Cu : carbon (C) quotas using the radiotracers ⁶⁷Cu and ¹⁴C revealed that under Cu-sufficient conditions oceanic diatoms had elevated Cu : C ratios relative to coastal strains, regardless of Fe availability. Two species (one oceanic and one coastal) significantly increased their Cu demands in response to Fe limitation, indicating upregulation of the Cu-dependent high-affinity Fe uptake system in these organisms. The changes in cellular Cu : C ratios were accompanied by variations in steady-state Cu uptake rates. Thus, in some cases Cu uptake rates appear to be regulated by the cell in response to Fe availability. Rates of Cu acquisition also responded significantly to Cu variability. The variation in Cu uptake was more closely correlated with changes in total Cu concentration in the medium than in inorganic, free Cu concentrations, implying that organic Cu complexes may be bioavailable to diatoms. These findings indicate a greater biological role for Cu than was previously thought in open ocean regions.
Article
Full-text available
Centric diatoms isolated from open ocean environments require higher concentrations of Cu for growth than their coastal counterparts. In artificial seawater medium containing ,1 nmol L 21 Cu, three coastal species maintained near maximum rates of growth, but the oceanic clones were unable to survive. Copper limitation was more severe in the diatoms grown in low- than in high-Fe seawater, suggesting that Cu and Fe were interacting essential resources. The interactive effect was in part the result of a Cu requirement for Fe transport. Thalassiosira weissflogii and Thalassiosira oceanica had lower Fe quotas and slower rates of Fe uptake when (Cu) was reduced in the medium. Brief exposure of Cu-limited cells to 10 nmol L 21 Cu increased the instantaneous Fe uptake rate by 1.5 times in T. oceanica. Steady-state uptake rates of both species at high, growth-saturating concentrations of Fe were also Cu dependent. Oceanic species appeared to have an additional Cu requirement that was independent of Fe acquisition and likely responsible for their higher requirements compared to coastal species. Evidence for the importance of Cu in natural communities of phytoplankton was obtained from an incubation experiment performed in the Fe-limited basin of the Bering Sea. Addition of 2 nmol L 21 Cu doubled the phytoplankton net growth rate compared to the untreated controls and, in the presence of extra Fe, increased the growth rate compared to the samples amended with Fe alone. The results suggest that Cu may be an important micronutrient for phytoplankton growth in low-Fe regions of the sea because of its role in Fe acquisition. Paradoxically, oceanic diatoms may be more susceptible to the effects of low Cu concentrations than coastal species.
Article
Full-text available
Omnivorous copepods are capable of discriminatory feeding using mechano- and chemosensory mechanisms. The presence of phycotoxins in phytoplankton often results in reduced consumption of such potential prey by copepods, though it has not been clear if this is the result of discriminatory feeding by either tactile (mechanosensory) or chemosensory recognition of toxic prey, or perhaps a physiological response to ingested neurotoxic compounds. In this study, experiments were performed to determine whether 3 species of marine copepods (Acartia tonsa, Centropages hamatus, and Eurytemora herdmani) that commonly co-occur with toxic Alexandrium spp. dinoflagellates were capable of discriminating between cultured Alexandrium spp, strains on the basis of paralytic shellfish poisoning (PSP) toxin content, i.e, by chemosensory means, using Live fluorescently labeled cells. Additional experiments investigated whether toxic cells in mixtures with non-toxic alternate species of dinoflagellates affected either prey selection or total carbon consumption rates of copepods, and whether daily carbon rations could be maintained on both toxic and non-toxic Alexandrium spp, monoculture diets. Results indicated that all 3 copepod species could discriminate between toxic and nontoxic Alexandrium spp, cells by chemosensory means, suggesting that selective behavior, rather than physiological effects, governs the grazing response of copepods exposed to toxic prey. Prey selection in mixtures of several dinoflagellate species depended on whether the Alexandrium spp. cells present were toxic or non-toxic. C. hamatus and E. herdmani (but not A. tonsa) maintained daily carbon rations despite the presence of toxic Alexandrium spp., chiefly through increased consumption of alternate prey. For A. tonsa and C, hamatus, carbon rations were not equivalent between toxic and non-toxic Alexandrium spp. monoculture diets, indicating strong aversions to PSP toxins, and the potential for physiological effects when no other food is available. In all experiments feeding behavior varied among copepod species, suggesting that grazing pressure on toxic Alexandrium spp, is not uniform throughout the zooplankton community. The grazer-deterrent effects observed have implications for the function of PSP toxins.
Article
Full-text available
We review within-year and between-year survival strategies of the meroplanktonic dinoflagellate alexandrium, with soecial attention to the role of cyst bedfs and extended dormancy. Some of the constraints on the evolution of cyst bed dynamics are discussed in the framework of a model borrowed from desert seed ecology, in which Q, the annual germination rate, is selected by p, the probability that the vegetative phase wioll be successful on decadal time scales. Since Alexandrium and closely related Pyrodinium, undergo gametogenesis at relatively low cell concentrations, specialised traits must have evolved to syngamy. It is suggested that motility and the use of chemical signals promote mating, and that the toxins act as pheromones. It is also proposed that toxins in cysts are used as signals to influence planozygote settlement so as to control dispersal of this stage, and ensure that cyst beds are sufficiently stocked to inoculate the water column adequately at the appropriate time of year.
Article
Full-text available
The centric diatom Thalassiosira pseudonana Hasle et Heimdal and the pennate diatom Phaeodactylum tricornutum Bohlin possess genes with translated sequences homologous to high-affinity ferric reductases present in model organisms. Thalassiosira pseudonana also possesses putative genes for membrane-bound ferroxidase (TpFET3) and two highly similar iron (Fe) permeases (TpFTR1 and TpFTR2), as well as a divalent metal (M2+) transporter belonging to the NRAMP superfamily (TpNRAMP). In baker’s yeast, the ferroxidase–permease complex transports Fe(II) produced by reductases. We investigated transcript abundances of these genes as a function of Fe quota (QFe). Ferric reductase transcripts are abundant in both species (15%–60% of actin) under low QFe and are down-regulated by 5- to 35-fold at high QFe, suggesting Fe(III) reduction is a common, inducible strategy for Fe acquisition in marine diatoms. Permease transcript abundance was regulated by Fe status in T. pseudonana, but we did not detect significant differences in expression of the copper (Cu)-containing ferroxidase. TpNRAMP showed the most dramatic regulation by QFe, suggesting a role in cellular Fe transport in either cell-surface uptake or vacuolar mobilization. We could not identify ferroxidase or permease homologues in the P. tricornutum genome. The up-regulation of genes in T. pseudonana that appear to be missing altogether from P. tricornutum as well as the finding that P. tricornutum seems to have an efficient system to acquire Fe′, suggest that diverse (and uncharacterized) Fe-uptake systems may be at play within diatom assemblages. Different uptake systems among diatoms may provide a mechanistic basis for niche differentiation with respect to Fe availability in the ocean.
Article
Full-text available
The re-emergence of Gymnodinum catenatum blooms after a 10 year hiatus of absence initiated the present investigation. This study aims to evaluate the exposure of small pelagic fishes to paralytic shellfish toxins (PST) during blooms of G. catenatum. Sardines (Sardina pilchardus) were selected as a representative fish species. In order to assess toxin availability to fish, both intracellular PSTs (toxin retained within the algal cells) and extracellular PSTs (toxin found in seawater outside algal cells) were quantified, as well as toxin levels within three fish tissue matrices (viscera, muscle and brain). During the study period, the highest cell densities of G. catenatum reached 2.5 × 104 cells l-1 and intracellular PST levels ranged from 3.4 to 398 ng STXeq l-1 as detected via an enzyme linked immunosorbent assay (ELISA). Measurable extracellular PSTs were also detected in seawater (0.2-1.1 μg STXeq l-1) for the first time in Atlantic waters. The PST profile in G. catenatum was determined via high performance liquid chromatography with fluorescence detection (HPLC-FLD) and consisted mostly of sulfocarbamoyl (C1+2, B1) and decarbamoyl (dcSTX, dcGTX2+3, dcNEO) toxins. The observed profile was similar to that reported previously in G. catenatum blooms in this region before the 10-year hiatus. Sardines, planktivorous fish that ingest a large number of phytoplankton cells, were found to contain PSTs in the viscera, reaching a maximum of 531 μg STXeq kg-1. PSTs were not detected in corresponding muscle or brain tissues. The PST profile characterized in sardine samples consisted of the same sulfocarbamoyl and decarbamoyl toxins found in the algal prey with minor differences in relative abundance of each toxin. Overall, the data suggest that significant biotransformation of PSTs does not occur in sardines. Therefore, planktivorous fish may be a good tracer for the occurrence of offshore G. catenatum blooms and the associated PSTs produced by these algae.
Article
Full-text available
A fundamental goal of cell biology is to define the functions of proteins in the context of compartments that organize them in the cellular environment. Here we describe the construction and analysis of a collection of yeast strains expressing full-length, chromosomally tagged green fluorescent protein fusion proteins. We classify these proteins, representing 75% of the yeast proteome, into 22 distinct subcellular localization categories, and provide localization information for 70% of previously unlocalized proteins. Analysis of this high-resolution, high-coverage localization data set in the context of transcriptional, genetic, and protein-protein interaction data helps reveal the logic of transcriptional co-regulation, and provides a comprehensive view of interactions within and between organelles in eukaryotic cells.
Article
Full-text available
Supernatant fractions of various tissues and plasma from the North American bullfrog, Rana catesbeiana, specifically bind saxitoxin with high affinity. Binding of [3H]saxitoxin to bullfrog plasma follows single-site behavior with an equilibrium dissociation constant of Kd = 0.16±0.03 nM at 0°C and a maximum binding capacity of 380±60 pmole/ml plasma. High-affinity binding of [3H]saxitoxin is chemically specific since it is unaffected by tetrodotoxin and a variety of cationic peptides, amino acids and drugs. The structure-activity dependence of binding to this site was investigated with eight different natural and synthetic derivatives of saxitoxin. Substitution of the carbamoyl side chain or the C-12 β-hydroxyl group of saxitoxin with a hydrogen atom had little effect on binding affinity, but addition of a hydroxyl group at the N-1 position decreased the binding affinity from 430- to 710-fold in three different molecular pairs. High performance size exclusion chromatography of supernatant from bullfrog skeletal muscle showed that the [3H]saxitoxin-binding component migrates with an apparent molecular weight of Mr = 74,000±8000 or a Stokes radius of . The [3H]saxitoxin-binding protein in skeletal muscle extract or plasma is retained on a cation-exchange column at pH 6.0, suggesting that the protein contains a region of exposed basic residues. Column isoelectric focusing of a sample from plasma indicated that the protein has a basic isoelectric point near pH = 10.7. These pharmacological and biochemical properties imply that this soluble saxitoxin-binding activity is associated with a novel protein named saxiphilin that is structurally distinct from known subtypes of functional sodium channel proteins which are the biological target of saxitoxin's paralyzing effect.
Article
Full-text available
Prokaryotic voltage-gated sodium channels (Na(V)s) form homotetramers with each subunit contributing six transmembrane α-helices (S1-S6). Helices S5 and S6 form the ion-conducting pore, and helices S1-S4 function as the voltage sensor with helix S4 thought to be the essential element for voltage-dependent activation. Although the crystal structures have provided insight into voltage-gated K channels (K(V)s), revealing a characteristic domain arrangement in which the voltage sensor domain of one subunit is close to the pore domain of an adjacent subunit in the tetramer, the structural and functional information on Na(V)s remains limited. Here, we show that the domain arrangement in NaChBac, a firstly cloned prokaryotic Na(V), is similar to that in K(V)s. Cysteine substitutions of three residues in helix S4, Q107C, T110C, and R113C, effectively induced intersubunit disulfide bond formation with a cysteine introduced in helix S5, M164C, of the adjacent subunit. In addition, substituting two acidic residues with lysine, E43K and D60K, shifted the activation of the channel to more positive membrane potentials and consistently shifted the preferentially formed disulfide bond from T110C/M164C to Q107C/M164C. Because Gln-107 is located closer to the extracellular side of helix S4 than Thr-110, this finding suggests that the functional shift in the voltage dependence of activation is related to a restriction of the position of helix S4 in the lipid bilayer. The domain arrangement and vertical mobility of helix S4 in NaChBac indicate that the structure and the mechanism of voltage-dependent activation in prokaryotic Na(V)s are similar to those in canonical K(V)s.
Article
Full-text available
Saxitoxin (STX) and its 57 analogs are a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs). PSTs are the causative agents of paralytic shellfish poisoning (PSP) and are mostly associated with marine dinoflagellates (eukaryotes) and freshwater cyanobacteria (prokaryotes), which form extensive blooms around the world. PST producing dinoflagellates belong to the genera Alexandrium, Gymnodinium and Pyrodinium whilst production has been identified in several cyanobacterial genera including Anabaena, Cylindrospermopsis, Aphanizomenon Planktothrix and Lyngbya. STX and its analogs can be structurally classified into several classes such as non-sulfated, mono-sulfated, di-sulfated, decarbamoylated and the recently discovered hydrophobic analogs--each with varying levels of toxicity. Biotransformation of the PSTs into other PST analogs has been identified within marine invertebrates, humans and bacteria. An improved understanding of PST transformation into less toxic analogs and degradation, both chemically or enzymatically, will be important for the development of methods for the detoxification of contaminated water supplies and of shellfish destined for consumption. Some PSTs also have demonstrated pharmaceutical potential as a long-term anesthetic in the treatment of anal fissures and for chronic tension-type headache. The recent elucidation of the saxitoxin biosynthetic gene cluster in cyanobacteria and the identification of new PST analogs will present opportunities to further explore the pharmaceutical potential of these intriguing alkaloids.
Article
Full-text available
Three species of yeasts are taxonomically described for strains isolated from marine environments. Candida spencermartinsiae sp. nov. (type strain CBS 10894T =NRRL Y-48663T) and Candida taylorii sp. nov. (type strain CBS 8508T =NRRL Y-27213T) are anamorphic ascomycetous yeasts in a phylogenetic cluster of marine yeasts in the Debaryomyces/Lodderomyces clade of the Saccharomycetales. The two species were isolated from multiple locations among coral reefs and mangrove habitats. Pseudozyma abaconensis sp. nov. (type strain CBS 8380T =NRRL Y-17380T) is an anamorphic basidiomycete that is related to the smut fungi of the genus Ustilago in the Ustilaginales. P. abaconensis was collected from waters adjacent to a coral reef.
Article
Full-text available
Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004-2007) and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA) and an enzyme-linked immunosorbent assay (ELISA). Characterization of the PST toxin profile in the Sequim Bay isolates by pre-column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 +/- 9.7% of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region.
Article
Full-text available
Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP) and azaspiracid shellfish poisoning (ASP). Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels.
Article
Full-text available
Supernatant fractions of various tissues and plasma from the North American bullfrog, Rana catesbeiana, specifically bind saxitoxin with high affinity. Binding of [3H]saxitoxin to bullfrog plasma follows single-site behavior with an equilibrium dissociation constant of Kd = 0.16 +/- 0.03 nM at 0 degrees C and a maximum binding capacity of 380 +/- 60 pmole/ml plasma. High-affinity binding of [3H]saxitoxin is chemically specific since it is unaffected by tetrodotoxin and a variety of cationic peptides, amino acids and drugs. The structure-activity dependence of binding to this site was investigated with eight different natural and synthetic derivatives of saxitoxin. Substitution of the carbamoyl side chain or the C-12 beta-hydroxyl group of saxitoxin with a hydrogen atom had little effect on binding affinity, but addition of a hydroxyl group at the N-1 position decreased the binding affinity from 430- to 710-fold in three different molecular pairs. High performance size exclusion chromatography of supernatant from bullfrog skeletal muscle showed that the [3H]saxitoxin-binding component migrates with an apparent molecular weight of Mr = 74,000 +/- 8000 or a Stokes radius of 35 +/- 2A. The [3H]saxitoxin-binding protein in skeletal muscle extract or plasma is retained on a cation-exchange column at pH 6.0, suggesting that the protein contains a region of exposed basic residues. Column isoelectric focusing of a sample from plasma indicated that the protein has a basic isoelectric point near pH = 10.7.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
Full-text available
Plasma from the bullfrog, Rana catesbeiana, contains a soluble component of unknown function that specifically binds the neurotoxin, [3H]saxitoxin, with a Kd of approximately 0.2 nM. Saxiphilin, the protein responsible for this activity, was purified approximately 440-fold from bullfrog plasma by column chromatography on heparin-Sepharose followed by chromatofocusing. The purified saxiphilin preparation exhibits a binding capacity of 9.6 nmol/mg protein and a Kd of 0.32 nM for [3H]saxitoxin. Analysis of the preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows a predominant band migrating with an apparent Mr of approximately 89,000 which is similar to the expected size of saxiphilin previously estimated by nondenaturing size exclusion chromatography. Amino-terminal sequencing of the approximately 89-kDa protein and sequencing of four different tryptic peptide fragments revealed that each of the partial saxiphilin sequences can be aligned by homology with members of the transferrin protein family with sequence identity as high as 69%. The available sequence corresponding to conserved residues that comprise part of the two Fe3+ binding sites in lacto-transferrin show several substitutions in saxiphilin, suggesting that saxiphilin is not an Fe(3+)-binding protein. Saxiphilin appears to be a monomeric approximately 89-kDa protein that is evolutionarily related to transferrin but which binds saxitoxin instead of Fe3+.
Article
Full-text available
The effects of monovalent, divalent, and trivalent cations on the binding of tetrodotoxin and saxitoxin to intact nerves and to a preparation of solubilized nerve membranes have been examined. All eight divalent and trivalent cations tested, and the monovalent ions Li(+), Tl(+), and H(+) appear to compete reversibly with the toxins for their binding site. The ability of lithium to reduce toxin binding is paralleled by its ability to reduce tetrodotoxin-sensitive ion fluxes through the nerve membrane. We conclude that the toxins act at a metal cation binding site in the sodium channel and suggest that this site is the principal coordination site for cations (normally Na(+) ions) as they pass through the membrane during an action potential. The dissociation constant for Li(+) is 0.1-0.2 M and for Na(+) > 0.6 M, reflecting the weak binding necessary for rapid passage of sodium ions through the channel.
Article
Full-text available
The yeast Saccharomyces cerevisiae contains a plasma membrane reductase activity associated with the gene product of the FRE1 locus. This reductase is required for Fe(III) uptake by this yeast; transcription from FRE1 is repressed by iron (Dancis, A., Klausner, R. D., Hinnebusch, A. G., and Barriocanal, J. G. (1990) Mol. Cell. Biol. 10, 2294-2301). We show here that Cu(II) is equally efficient at repressing FRE1 transcription and is an excellent substrate for the Fre1p reductase. This reductase activity is required for 50-70% of the uptake of 64Cu by wild type cells. Under conditions of low Fre1-dependent activity, cells retain 30-70% of Cu(II) reductase activity but only 8-25% of Fe(III) reductase activity. While Fre1p-dependent activity is 100% inhibitable by Pt(II), this residual Cu(II) reduction is insensitive to this inhibitor. The data suggest the presence of a Fre1p-independent reductase activity in the yeast plasma membrane which is relatively specific for Cu(II) and which supports copper uptake in the absence of FRE1 expression. The gene product of MAC1, which is required for regulation of FRE1 transcription, is also required for expression of Cu(II) reduction activity. This is due in part to its role in the regulation of FRE1; however, it is required for expression of the putative Cu(II) reductase, as well. Similarly, a gain-of-function mutation, MAC1up1, which causes elevated and unregulated transcription from FRE1 and elevated Fe(III) reduction and 59Fe uptake exhibits a similar phenotype with respect to Cu(II) reduction and 64Cu uptake. Ascorbate, which reduces periplasmic Cu(II) to Cu(I), suppresses the dependence of 64Cu uptake on plasma membrane reductase activity as is the case for ascorbate-supported 59Fe uptake. The close parallels between Cu(II) and Fe(III) reduction, and 64Cu and 59Fe uptake, strongly suggest that Cu(II) uptake by yeast involves a Cu(I) intermediate. This results in the reductive mobilization of the copper from periplasmic chelating agents, making the free ion available for translocation across the plasma membrane.
Article
Full-text available
The CTR1 gene of Saccharomyces cerevisiae encodes a protein required for high affinity copper uptake. The protein is expressed on the plasma membrane, is heavily glycosylated with O-linkages, and exists as an oligomer in vivo. The transcript abundance is strongly regulated by copper availability, being induced by copper deprivation and repressed by copper excess. Regulation occurs at very low, nontoxic levels of available copper and is independent of ACE1, the trans-inducer of yeast metallothionein. Expression of Ctr1p is limiting for copper uptake, since overexpression from a 2 mu high copy number plasmid increases copper uptake. Mutations in CTR1 result in altered cellular responses to extracellular copper, demonstrating a physiologic role for CTR1 in the delivery of copper to the cytosol. A copper-dependent reporter gene construct, CUP1-lacZ, is not expressed in CTR1 mutants to the same level as in wild-type strains, and Cu,Zn superoxide dismutase activity is deficient in these mutants. The growth arrest that occurs in CTR1 mutants grown aerobically in copper-deficient media is attributable to the defect in Cu,Zn superoxide dismutase activity.
Article
Full-text available
Protection from copper toxicity in the bakers' yeast Saccharomyces cerevisiae involves the action of a copper binding metallothionein encoded by the CUP1 locus. To identify additional factors contributing to copper ion homeostasis and detoxification, we screened a genomic library for genes that confer high levels of copper resistance to yeast strains lacking CUP1. This screen led to the identification of the CRS5 (copper-resistant suppressor) gene. By sequence analyses, CRS5 encodes a small molecular weight cysteine-rich protein with an amino acid sequence bearing all the features of a eukaryotic metallothionein. The CRS5 polypeptide exhibits a striking similarity to a number of mammalian and invertebrate metallothioneins, yet shares surprisingly little homology with CUP1. In yeast, CRS5 is expressed as a 0.5-kilobase mRNA that is regulated both by copper ions and by oxidative stress, and expression is dependent upon ACE1, a copper and DNA binding transcription factor also known to regulate CUP1. Deletion of the chromosomal CRS5 locus was found to increase cellular sensitivity to copper, but not cadmium, toxicity. These studies support an important role for the CRS5 metallothionein-like protein in copper homeostasis and detoxification.
Article
Full-text available
Plasma and tissue of certain vertebrates contain a protein called saxiphilin that specifically binds the neurotoxin saxitoxin with nanomolar affinity. We describe the isolation of a cDNA clone of saxiphilin from liver of the North American bullfrog (Rana catesbeiana). The cDNA sequence encodes a protein that is evolutionarily related to members of the transferrin family of Fe(3+)-binding proteins. Pairwise sequence alignment of saxiphilin with various transferrins reveals amino acid identity as high as 51% and predicts 14 disulfide bonds that are highly conserved. The larger size of saxiphilin (91 kDa) versus serum transferrin (approximately 78 kDa) is primarily due to a unique insertion of 144 residues. This insertion contains a 49-residue domain classified as a type 1 repetitive element of thyroglobulin, which is shared by a variety of membrane, secreted, and extracellular matrix proteins. Saxiphilin also differs from transferrins in 9 of 10 highly conserved amino acids in the two homologous Fe3+/HCO3-binding sites of transferrin. Identification of saxiphilin implies that transferrin-like proteins comprise a diverse superfamily with functions other than iron binding.
Article
Full-text available
The cell surface protein repertoire needs to be regulated in response to changes in the extracellular environment. In this study, we investigate protein turnover of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p, in response to a change in extra-cellular copper levels. As Ctr1p mediates high affinity uptake of copper into the cell, modulation of its expression is expected to be involved in copper homeostasis. We demonstrate that Ctr1p is a stable protein when cells are grown in low concentrations of copper, but that exposure of cells to high concentrations of copper (10 microM) triggers degradation of cell surface Ctr1p. This degradation appears to be specific for Ctr1p and does not occur with another yeast plasma membrane protein tested. Internalization of some Ctr1p can be seen when cells are exposed to copper. However, yeast mutant strains defective in endocytosis (end3, end4 and chc1-ts) and vacuolar degradation (pep4) exhibit copper-dependent Ctr1p degradation, indicating that internalization and delivery to the vacuole is not the principal mechanism responsible for degradation. In addition, a variant Ctr1p with a deletion in the cytosolic tail is not internalized upon exposure of cells to copper, but is nevertheless degraded. These observations indicate that proteolysis at the plasma membrane most likely explains copper-dependent turnover of Ctr1p and point to the existence of a novel pathway in yeast for plasma membrane protein turnover.
Article
Full-text available
The pore-forming subunits of canonical voltage-gated sodium and calcium channels are encoded by four repeated domains of six-transmembrane (6TM) segments. We expressed and characterized a bacterial ion channel (NaChBac) from Bacillus haloduransthat is encoded by one 6TM segment. The sequence, especially in the pore region, is similar to that of voltage-gated calcium channels. The expressed channel was activated by voltage and was blocked by calcium channel blockers. However, the channel was selective for sodium. The identification of NaChBac as a functionally expressed bacterial voltage-sensitive ion-selective channel provides insight into both voltage-dependent activation and divalent cation selectivity.
Article
Full-text available
The unicellular green alga Chlamydomonas reinhardtii is a valuable model for studying metal metabolism in a photosynthetic background. A search of the Chlamydomonas expressed sequence tag database led to the identification of several components that form a copper-dependent iron assimilation pathway related to the high-affinity iron uptake pathway defined originally for Saccharomyces cerevisiae. They include a multicopper ferroxidase (encoded by Fox1), an iron permease (encoded by Ftr1), a copper chaperone (encoded by Atx1), and a copper-transporting ATPase. A cDNA, Fer1, encoding ferritin for iron storage also was identified. Expression analysis demonstrated that Fox1 and Ftr1 were coordinately induced by iron deficiency, as were Atx1 and Fer1, although to lesser extents. In addition, Fox1 abundance was regulated at the posttranscriptional level by copper availability. Each component exhibited sequence relationship with its yeast, mammalian, or plant counterparts to various degrees; Atx1 of C. reinhardtii is also functionally related with respect to copper chaperone and antioxidant activities. Fox1 is most highly related to the mammalian homologues hephaestin and ceruloplasmin; its occurrence and pattern of expression in Chlamydomonas indicate, for the first time, a role for copper in iron assimilation in a photosynthetic species. Nevertheless, growth of C. reinhardtii under copper- and iron-limiting conditions showed that, unlike the situation in yeast and mammals, where copper deficiency results in a secondary iron deficiency, copper-deficient Chlamydomonas cells do not exhibit symptoms of iron deficiency. We propose the existence of a copper-independent iron assimilation pathway in this organism.
Article
Full-text available
Potassium (K+) channels mediate numerous electrical events in excitable cells, including cellular membrane potential repolarization. The hERG K+ channel plays an important role in myocardial repolarization, and inhibition of these K+ channels is associated with long QT syndromes that can cause fatal cardiac arrhythmias. In this study, we identify saxitoxin (STX) as a hERG channel modifier and investigate the mechanism using heterologous expression of the recombinant channel in HEK293 cells. In the presence of STX, channels opened slower during strong depolarizations, and they closed much faster upon repolarization, suggesting that toxin-bound channels can still open but are modified, and that STX does not simply block the ion conduction pore. STX decreased hERG K+ currents by stabilizing closed channel states visualized as shifts in the voltage dependence of channel opening to more depolarized membrane potentials. The concentration dependence for steady-state modification as well as the kinetics of onset and recovery indicate that multiple STX molecules bind to the channel. Rapid application of STX revealed an apparent "agonist-like" effect in which K+ currents were transiently increased. The mechanism of this effect was found to be an effect on the channel voltage-inactivation relationship. Because the kinetics of inactivation are rapid relative to activation for this channel, the increase in K+ current appeared quickly and could be subverted by a decrease in K+ currents due to the shift in the voltage-activation relationship at some membrane potentials. The results are consistent with a simple model in which STX binds to the hERG K+ channel at multiple sites and alters the energetics of channel gating by shifting both the voltage-inactivation and voltage-activation processes. The results suggest a novel extracellular mechanism for pharmacological manipulation of this channel through allosteric coupling to channel gating.
Article
Full-text available
NaChBac, a six-α-helical transmembrane-spanning protein cloned from Bacillus halodurans, is the first functionally characterized bacterial voltage-gated Na+-selective channel (Ren, D., Navarro, B., Xu, H., Yue, L., Shi, Q., and Clapham, D. E. (2001) Science 294, 2372-2375). As a highly expressing ion channel protein, NaChBac is an ideal candidate for high resolution structural determination and structure-function studies. The biological role of NaChBac, however, is still unknown. In this report, another 11 structurally related bacterial proteins are described. Two of these functionally expressed as voltage-dependent Na+ channels (NaVPZ from Paracoccus zeaxanthinifaciens and NaVSP from Silicibacter pomeroyi). NaVPZ and NaVSP share ∼40% amino acid sequence identity with NaChBac. When expressed in mammalian cell lines, both NaVPZ and NaVSP were Na+-selective and voltage-dependent. However, their kinetics and voltage dependence differ significantly. These single six-α-helical transmembrane-spanning subunits constitute a widely distributed superfamily (NaVBac) of channels in bacteria, implying a fundamental prokaryotic function. The degree of sequence homology (22-54%) is optimal for future comparisons of NaVBac structure and function of similarity and dissimilarity among NaVBac proteins. Thus, the NaVBac superfamily is fertile ground for crystallographic, electrophysiological, and microbiological studies.
Article
Saxitoxins have been found in Australian populations of the cyanobacterium Anabaena circinalis. The C-toxins (Cl and C2) and gonyautoxins (GTX2 and GTX3) are dominant components, while saxitoxin (STX), GTX5 and decarbamoyl gonyautoxins (dcSTX, dcGTX2 and dcGTX3) are minor constituents. Variation in the concentration and composition of saxitoxins has been observed in natural populations and cultured strains of A. circinalis and may reflect environmental conditions. Laboratory experiments were conducted with a single strain of A. circinalis to examine the effect of different nitrogen sources (dissolved atmospheric nitrogen, nitrate or ammonium) and varying concentrations of nitrate (0.0028, 0.28 and 28 mg N l(-1)) on growth and saxitoxin levels. Growth was determined by cell enumeration and saxitoxin concentrations were analysed by high-performance liquid chromatography. All experiments consistently showed a linear relationship between cell density and saxitoxin concentration (intracellular + extracellular). Growth of A, circinalis was depressed by addition of ammonium (0.04 mg N l(-1)) and by high levels of nitrate (28 mg N l(-1)), and these treatments were associated with an increased toxin release. The concentration of extracellular saxitoxins increased with the age of cultures. The composition of intracellular and extracellular toxin profiles was usually similar; however, the relative abundance of the different toxins was not always the same. Extracellular toxin profiles generally comprised a higher proportion of STX and GTX2 and less C-toxins. A strong correlation between toxin quota (saxitoxin concentration per cell) and logarithmic growth rate was found in three of four experiments. Saxitoxin concentrations in A. circinalis appear to be indirectly affected by the source and concentration of nitrogen through growth.
Article
The influence of the trace metals, copper, aluminum and iron, and of the strong complexing agents, EDTA and NTA, on phytoplankton growth in water from a brackish water bay was investigated through bioassay experiments. A diatom (Skeletonema costatum (Grev.) Cleve) and a dinoflagellate (Prorocentrum minimum (Pav.) J. Schiller) were used as test organisms. The growth of both phytoplankton species was strongly inhibited by copper. This inhibition was generally eliminated by EDTA and NTA. Both phytoplankton species were considerably less inhibited by aluminum than by copper at the same total metal concentration. While S. costatum responded to copper and chelator additions in the same way in sea water samples from different seasons, the growth of P. minimum exhibited pronounced seasonal variation. Other parameters than the values of pCu must be considered in order to account for the experimental results. This work supports the theory that alterations in contents of trace metals and natural chelators in sea water are important factors behind shifts in phytoplankton species composition.
Article
The potent neurotoxin saxitoxin, and possibly several of its derivatives, are localized in two types of sites within the marine dinoflagellate Gonyaulax tamarensis Lebour. Immunocytochemical techniques using a polyclonal antibody and epifluorescence microscopy demonstrate toxin localization within the nucleus as well as on the periphery of small granules thought to be starch grains. In the nuclear region, the labelling occurred on or close to the permanently-condensed chromosomes as well as in an area within the two arms of the nucleus in the vicinity of the nucleous. No binding was observed in a closely-related, non-toxic dinoflagellate. Different binding affinities were observed between the nucleus and the grains at high and low antibody dilutions. This may relate to the polyclonal nature of the antiserum and to the presence of multiple toxins within the G. tamarensis isolate studied. Mechanistic interpretations of these labelling patterns remain speculative, especially the localization of the antigen at the outer edge of starch grains, but the distinct labelling in the nuclear region suggests that saxitoxin, with its two positively charged guanidinium groups, may bind to nucleic acids or nuclear proteins in a manner analogous to the polyamines and other cations. The labelling patterns reported here suggest that the saxitoxins may not simply be secondary metabolites but instead could be important compounds involved in the structure and function of the G. tamarensis genome.
Article
We investigated the presence of plasmalemma-bound copper-containing oxidases associated with the inducible iron (Fe) transport system in two diatoms of the genus Thalassiosira. Under Fe-limiting conditions, Thalassiosira oceanica, an oceanic isolate, was able to enzymatically oxidize inorganic Fe(II) extracellularly. This oxidase activity was dependent on copper (Cu) availability and diminished by exposure to a multi-Cu oxidase (MCO) inhibitor. The rates of Fe uptake from ferrioxamine B by Fe-limited T. oceanica were also dependent on Cu availability in the growth media. The effects of Cu limitation on Fe(II) oxidation and Fe uptake from ferrioxamine B were partially reversed after a short exposure to a Cu addition, indicating that the putative oxidases contain Cu. Limited physiological experiments were also performed with the coastal diatom Thalassiosira pseudonana and provided some evidence for putative Cu-containing oxidases in the high-affinity Fe transport system of this isolate. To support these preliminary physiological data, we searched the newly available T. pseudonana genome for a multi-Cu-containing oxidase gene and, using real-time polymerase chain reaction (PCR), quantified its expression under various Fe and Cu levels. We identified a putative MCO gene with predicted transmembrane domains and found that transcription levels of this gene were significantly elevated in Fe-limited cells relative to Fe-replete cells. These data collectively suggest that putative MCOs are part of the inducible Fe transport system of Fe-limited diatoms, which act to oxidize Fe(II) following reductive dissociation of Fe(III) from strong organic complexes. © 2006, by the American Society of Limnology and Oceanography, Inc.
Article
We studied cupric glutamate as a novel algicide for marine harmful algae and hexadecyltrimethyleamine bromide (HDTMAB) as an accelerant. Cupric glutamate had an excellent ability to inhibit the growth of Alexandrium sp. LC3, but the inhibition efficiency did not increase with higher cupric glutamate concentration. The studies on the inhibition ofAlexandrium sp. LC3 by cupric sulfate or cupric glutamate showed that cupric glutamate had a higher inhibition rate than cupric sulfate (P < 0.05). HDTMAB could significantly enhance the inhibition by cupric glutamate (P < 0.05). Ultrastructural changes of Alexandrium sp. LC3 under cupric sulfate, cupric glutamate, and cupric glutamate–HDTMAB combined treatment were studied with TEM. Under these stresses, the integrity of the cell plasma membranes (cell plasma membrane, chloroplast and mitochondria membranes) was destroyed. The degree of damage under cupric glutamate–HDTMAB combined treatment was more severe than under the other stresses. These results indicated that mechanistically cupric glutamate inhibits algal growth by destroying the cell membranes, and that HDTMAB promotes this process, which induced mass extravasation of intracellular components and more copper ion entry into the plasma.
Article
In excitable cells, the main mediators of sodium conductance across membranes are voltage-gated sodium channels (Na(V)s). Eukaryotic Na(V)s are essential elements in neuronal signaling and muscular contraction and in humans have been causally related to a variety of neurological and cardiovascular channelopathies. They are complex heavily glycosylated intrinsic membrane proteins present in only trace quantities that have proven to be challenging objects of study. However, in recent years, a number of simpler prokaryotic sodium channels have been identified, with NaChBac from Bacillus halodurans being the most well-characterized to date. The availability of a bacterial Na(V) that is amenable to heterologous expression and functional characterization in both bacterial and mammalian systems has provided new opportunities for structure--function studies. This review describes features of NaChBac as an exemplar of this class of bacterial channels, compares prokaryotic and eukaryotic Na(V)s with respect to their structural organization, pharmacological profiling, and functional kinetics, and discusses how voltage-gated ion channels may have evolved to deal with the complex functional demands of higher organisms.
Article
Investigations of the diversity of culturable yeasts at deep-sea hydrothermal sites have suggested possible interactions with endemic fauna. Samples were collected during various oceanographic cruises at the Mid-Atlantic Ridge, South Pacific Basins and East Pacific Rise. Cultures of 32 isolates, mostly associated with animals, were collected. Phylogenetic analyses of 26S rRNA gene sequences revealed that the yeasts belonged to Ascomycota and Basidiomycota phyla, with the identification of several genera: Rhodotorula, Rhodosporidium, Candida, Debaryomyces and Cryptococcus. Those genera are usually isolated from deep-sea environments. To our knowledge, this is the first report of yeasts associated with deep-sea hydrothermal animals.
Article
Saxitoxin is a potent neurotoxin produced by several species of dinoflagellates and cyanobacteria. The molecular target of saxitoxin in higher eukaryotes is the voltage-gated sodium channel; however, its target in lower eukaryotic organisms remains unknown. The goal of this study was to obtain the transcriptional fingerprint of the model lower eukaryote Saccharomyces cerevisiae upon exposure to saxitoxin to identify potential genes suitable for biomarker development. Microarray analyses identified multiple genes associated with copper and iron homeostasis and sulfur metabolism as significantly differentially expressed upon exposure to saxitoxin; these results were verified with quantitative reverse-transcriptase PCR (qRT-PCR). Additionally, the qRT-PCR assays were used to generate expression profiles in a subset of the differentially regulated genes across multiple exposure times and concentrations, the results of which demonstrated that overall, genes tended to respond in a consistent manner to the toxin. In general, the genes encoding the metallothioneins CUP1 and CRS5 were induced following exposure to saxitoxin, while those encoding the ferric/ cupric reductase FRE1 and the copper uptake transporter CTR1 were repressed. The gene encoding the multicopper ferroxidase FET3, part of the high-affinity iron uptake system, was also induced in all treatments, along with the STR3 gene, which codes for the cystathionine beta-lyase found in the methionine biosynthetic pathway.
Article
The aim of this work was to assess the effects of 1 week copper exposure (6.2, 108, 210 and 414microM) on Scenedesmus vacuolatus and Chlorella kessleri. The strains showed different susceptibility to copper. Copper content was determined in both strains by total X-ray reflection fluorescence analysis (TXRF). In S. vacuolatus, the increase of medium copper concentration induced an augmentation of protein and MDA content, and a significant decrease in the chlorophyll a/chlorophyll b ratio. S. vacuolatus showed a significant increase of catalase activity in 210 and 414microM of copper, and a significant increment of SOD activity and GSH content only in 414microM of copper. On the contrary, C. kessleri did not show significant differences in these parameters between 6.2 and 108microM of copper. Increased copper in the environment evokes oxidative stress and an increase in the antioxidant defenses of S. vacuolatus.
Article
The principal iron uptake system of Saccharomyces cerevisiae utilizes a reductase activity that acts on ferric iron chelates external to the cell. The FRE1 gene product is required for this activity. The deduced amino acid sequence of the FRE1 protein exhibits hydrophobic regions compatible with transmembrane domains and has significant similarity to the sequence of the plasma membrane cytochrome b558 (the X-CGD protein), a critical component of a human phagocyte oxidoreductase, suggesting that FRE1 is a structural component of the yeast ferric reductase. FRE1 mRNA levels are repressed by iron. Fusion of 977 base pairs of FRE1 DNA upstream from the translation start site of an Escherichia coli lacZ reporter gene confers iron-dependent regulation on expression of beta-galactosidase in yeast. An 85-base-pair segment of FRE1 5' noncoding sequence contains a RAP1 binding site and a repeated sequence, TTTTTGCTCAYC; this segment is sufficient to confer iron-repressible transcriptional activity on heterologous downstream promoter elements.
Article
The SS2 and adjacent regions of the 4 internal repeats of sodium channel II were subjected to single mutations involving, mainly, charged amino acid residues. These sodium channel mutants, expressed in Xenopus oocytes by microinjection of cDNA-derived mRNAs, were tested for sensitivity to tetrodotoxin and saxitoxin and for single-channel conductance. The results obtained show that mutations involving 2 clusters of predominantly negatively charged residues, located at equivalent positions in the SS2 segment of the 4 repeats, strongly reduce toxin sensitivity, whereas mutations of adjacent residues exert much smaller or no effects. This suggests that the 2 clusters of residues, probably forming ring structures, take part in the extracellular mouth and/or the pore wall of the sodium channel. This view is further supported by our finding that all mutations reducing net negative charge in these amino acid clusters cause a marked decrease in single-channel conductance.
Article
The yeast Saccharomyces cerevisiae is now recognized as a model system representing a simple eukaryote whose genome can be easily manipulated. Yeast has only a slightly greater genetic complexity than bacteria and shares many of the technical advantages that permitted rapid progress in the molecular genetics of prokaryotes and their viruses. Some of the properties that make yeast particularly suitable for biological studies include rapid growth, dispersed cells, the ease of replica plating and mutant isolation, a well-defined genetic system, and most important, a highly versatile DNA transformation system. Being nonpathogenic, yeast can be handled with little precautions. Large quantities of normal baker's yeast are commercially available and can provide a cheap source for biochemical studies. The development of DNA transformation has made yeast particularly accessible to gene cloning and genetic engineering techniques. Structural genes corresponding to virtually any genetic trait can be identified by complementation from plasmid libraries. Plasmids can be introduced into yeast cells either as replicating molecules or by integration into the genome. In contrast to most other organisms, integrative recombination of transforming DNA in yeast proceeds exclusively via homologous recombination. Cloned yeast sequences, accompanied by foreign sequences on plasmids, can therefore be directed at will to specific locations in the genome.
Article
1. The actions of three saxitoxin (STX) analogues have been studied on the frog sartorius muscle fibre and the squid giant axon. One--neosaxitoxin--is a natural analogue, and two--decarbamylsaxitoxin and reduced saxitoxin--are synthetic. 2. The maximum dV/dt of the action potential in paired-muscle protocol is reduced by the analogues with relative potencies: STX (1), tetrodotoxin (1), neo-STX (1), decarbamyl-STX (0.2) and reduced-STX (0.01). 3. In constant-current studies on frog muscle fibres and in voltage-clamp studies on squid axons, all three analogues block only the sodium channel without affecting the potassium channel. 4. All three analogues bind to the same site as does STX in a competitive manner. 5. The experimental results suggest that the active groups in STX are the 7,8,9 guanidinium and the C-12 hydroxy groups. The carbamyl group contributes to, but is not essential for activity. 6. Stereospecific groups in the tetrodotoxin (TTX) molecule are the 1,2,3 guanidinium and the C-9, C-10 hydroxy groups. C-4 and C-8 groups are also important. 7. As new view is proposed in which STX and TTX can bind to a receptor located in the outside surface of the membrane very close to the orifice of the sodium channel.
Article
Copper resistance in yeast is controlled by the CUP1 locus. The level of resistance is proportional to the copy number of this locus, which can be found in up to 15 tandemly iterated copies. To elucidate the molecular mechanisms controlling the amplification and expression of the CUP1, locus, we determined its full nucleotide sequence. We have also identified and mapped two transcription units within the basic amplification unit of CUP1 in laboratory yeast strains. One of those transcription units is inducible by copper and encodes a low molecular weight copper binding protein--copper chelatin. The increased production of chelatin, due to both gene amplification and induction of transcription, leads to increased resistance of yeast cells to copper ions.
Article
S. cerevisiae accumulate iron by a process requiring a ferrireductase and a ferrous transporter. We have isolated a mutant, fet3, defective for high affinity Fe(II) uptake. The wild-type FET3 gene was isolated by complementation of the mutant defect. Sequence analysis of the gene revealed the presence of an open reading frame coding for a protein with strong similarity to the family of blue multicopper oxidoreductases. Consistent with the role of copper in iron transport, growth of wild-type cells in copper-deficient media resulted in decreased ferrous iron transport. Addition of copper, but not other transition metals (manganese or zinc), to the assay media resulted in the recovery of Fe(II) transporter activity. We suggest that the catalytic activity of the Fet3 protein is required for cellular iron accumulation.
Article
We report the identification and characterization of CTR1, a gene in the yeast S. cerevisiae that encodes a multispanning plasma membrane protein specifically required for high affinity copper transport into the cell. The predicted protein contains a methionine- and serine-rich domain that includes 11 examples of the sequence Met-X2-Met, a motif noted in proteins involved in bacterial copper metabolism. CTR1 mutants and deletion strains have profound deficiency in ferrous iron uptake, thus revealing a requirement for copper in mediating ferrous transport into the cell. Genetic evidence suggests that the target for this requirement is the FET3 gene (detailed in a companion study), predicted to encode a copper-containing protein that acts as a cytosolic ferro-oxidase. These findings provide an unexpected mechanistic link between the uptake of copper and iron.
Article
Iron must cross biological membranes to reach essential intracellular enzymes. Two proteins in the plasma membrane of yeast—a multicopper oxidase, encoded by the FET3 gene, and a permease, encoded by the FTR1 gene—were shown to mediate high-affinity iron uptake. FET3 expression was required for FTR1 protein to be transported to the plasma membrane. FTR1 expression was required for apo-FET3 protein to be loaded with copper and thus acquire oxidase activity. FTR1 protein also played a direct role in iron transport. Mutations in a conserved sequence motif of FTR1 specifically blocked iron transport.
Article
Transition metals such as iron, copper, manganese, and zinc are essential nutrients. The yeast Saccharomyces cerevisiae is an ideal organism for deciphering the mechanism and regulation of metal ion transport. Recent studies of yeast have shown that accumulation of any single metal ion is mediated by two or more substrate-specific transport systems. High-affinity systems are active in metal-limited cells, whereas low-affinity systems play the predominant roles when the substrate is more abundant. Metal ion uptake systems of cells are tightly controlled, and both transcriptional and posttranscriptional regulatory mechanisms have been identified. Most importantly, studies of S. cerevisiae have identified a large number of genes that function in metal ion transport and have illuminated the existence of importance of gene families that play related roles in these processes in mammals.
Article
The Aft1 transcription factor regulates the iron regulon in response to iron availability in Saccharomyces cerevisiae. Aft1 activates a battery of genes required for iron uptake under iron-starved conditions, whereas Aft1 function is inactivated under iron-replete conditions. Previously, we have shown that iron-regulated DNA binding by Aft1 is responsible for the controlled expression of target genes. Here we show that this iron-regulated DNA binding by Aft1 is not due to the change in the total expression level of Aft1 or alteration of DNA binding activity. Rather, nuclear localization of Aft1 responds to iron status, leading to iron-regulated expression of the target genes. We identified the nuclear export signal (NES)-like sequence in the AFT1 open reading frame. Mutation of the NES-like sequence causes nuclear retention of Aft1 and the constitutive activation of Aft1 function independent of the iron status of the cells. These results suggest that the nuclear export of Aft1 is critical for ensuring iron-responsive transcriptional activation of the Aft1 regulon and that the nuclear import/export systems are involved in iron sensing by Aft1 in S. cerevisiae.
Article
In the past few years, exciting advances have been made toward understanding how copper is transported into and distributed to cupro-proteins within cells. Recent work has identified high-affinity copper transporters at the plasma membrane in a number of organisms. The elucidation of the three-dimensional structure of copper chaperones and target cupro-proteins has shown that highly specific interactions between homologous domains foster copper transfer between conserved copper ligands, and facilitate a detailed understanding of vectorial copper-transfer reactions. Furthermore, the recent generation of mouse-knockout models, deficient in a high-affinity copper transporter, or in copper chaperones, has demonstrated the importance of copper uptake and targeted distribution in both predicted and fascinating unanticipated ways in growth and development.
Article
Saxitoxin (STX) and tetrodotoxin (TTX) are frequently used to selectively block sodium channels. In this study, we provide evidence that commercial STX also inhibits L-type Ca2+ currents (I(Ca,L)) in adult mouse ventricular myocytes (VMs) and tsA-201 cells that were transiently cotransfected with three calcium channel subunits. We measured inhibition of sodium currents (INa) in mouse VMs, of I(Ca,L) in mouse VM and tsA-201 cells, and intracellular calcium concentration ([Ca2+]i) transients in single mouse VMs. STX or TTX was abruptly applied before the test voltage pulse using a rapid solution switcher device. STX (10 microM; Calbiochem) and TTX (60 microM; Sigma-Aldrich) completely blocked INa in mouse VMs. However, STX at 10 microM also reduced I(Ca,L) in mouse VM by 39% (P < 0.0001; n = 14), whereas TTX at 60 microM had no effect on I(Ca,L). STX (10 microM; Calbiochem) reduced the amplitude of the [Ca2+]i transients in mouse VMs by 36% (P < 0.0001; n = 10). In contrast, TTX (60 microM; Sigma-Aldrich) only reduced the amplitude of the [Ca2+]i transients by 9% (P = 0.003; n = 5). STX (10 microM) obtained from Sigma-Aldrich showed a similar inhibitory effect on I(Ca,L) (33%) (P < 0.0001; n = 5) in mouse VMs. STX (Calbiochem) inhibited the calcium currents of tsA-201 cells in a dose-dependent manner. This inhibition was voltage-independent. The current-voltage relationship of calcium currents in tsA-201 cells was not altered by STX. These results indicate that STX partially blocks L-type Ca2+ channels and thus provide further evidence that its effects are not specific for Na+ channels.