Chromatin modifications induced by the AML1-ETO fusion protein reversibly silence its genomic targets through AML1 and Sp1 binding motifs

Molecular Cytogenetics Group, Human Cancer Genetics programme, Centro Nacional Investigaciones Oncologicas, Centro de Investigaciones de Enfermedades Raras, Madrid, Spain.
Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K (Impact Factor: 10.43). 01/2012; 26(6):1329-37. DOI: 10.1038/leu.2011.376
Source: PubMed


The AML1-ETO fusion protein, which is present in 10-15% of cases of acute myeloid leukemia, is known to repress myeloid differentiation genes through DNA binding and recruitment of chromatin-modifying proteins and transcription factors in target genes. ChIP-chip analysis of human hematopoietic stem/progenitor cells transduced with the AML1-ETO fusion gene enabled us to identify 1168 AML1-ETO target genes, 103 of which were co-occupied by histone deacetylase 1 (HDAC1) and had lost the hyperacetylation mark at histone H4, and 264 showed a K9 trimethylation at histone H3. Enrichment of genes involved in hematopoietic differentiation and in specific signaling pathways was observed in the presence of these epigenetic modifications associated with an 'inactive' chromatin status. Furthermore, AML1-ETO target genes had a significant correlation between the chromatin marks studied and transcriptional silencing. Interestingly, AML1 binding sites were absent on a large number of selected AML1-ETO promoters and an Sp1 binding site was found in over 50% of them. Reversible silencing induced by the fusion protein in the presence of AML1 and/or Sp1 transcription factor binding site was confirmed. Therefore, this study provides a global analysis of AML1-ETO functional chromatin modifications and identifies the important role of Sp1 in the DNA binding pattern of AML1-ETO, suggesting a role for Sp1-targeted therapy in this leukemia subtype.

Download full-text


Available from: James C Mulloy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The disruption of RUNX1 function is one of the main mechanisms of disease observed in hematopoietic malignancies and the description of novel genetic events that lead to a RUNX1 loss of function has been accelerated with the development of genomic technologies. Here we describe the molecular characterization of a new t(4;21)(q21;q22) in a de novo myelodysplastic syndrome that resulted in the deletion of the RUNX1 gene. We demonstrated by quantitative real-time RT-PCR an almost complete depletion of the expression of the RUNX1 gene in our t(4;21) case compared with CD34(+) cells that was independent of mutation or DNA methylation. More importantly, we explored and confirmed the possibility that this abrogation also prevented transactivation of RUNX1 target genes, perhaps confirming the genetic origin of the thrombocytopenia and the myelodysplastic features observed in our patient, and certainly mimicking what has been observed in the presence of the RUNX1/ETO fusion protein.
    Full-text · Article · Nov 2011 · Haematologica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The t(8;21) translocation fuses the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape, we measured genome-wide RUNX1- and RUNX1/ETO-bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. To this end, we determined dynamic alterations of histone acetylation, RNA Polymerase II binding and RUNX1 occupancy in the presence or absence of RUNX1/ETO using a knockdown approach. Combined global assessments of chromatin accessibility and kinetic gene expression data show that RUNX1/ETO controls the expression of important regulators of hematopoietic differentiation and self-renewal. We show that selective removal of RUNX1/ETO leads to a widespread reversal of epigenetic reprogramming and a genome-wide redistribution of RUNX1 binding, resulting in the inhibition of leukemic proliferation and self-renewal, and the induction of differentiation. This demonstrates that RUNX1/ETO represents a pivotal therapeutic target in AML.Keywords: acute myeloid leukemia; RUNX1/ETO; epigenetic regulation; chromatin; integrated analysis of high-throughput data
    Full-text · Article · Feb 2012 · Leukemia
  • [Show abstract] [Hide abstract]
    ABSTRACT: The AML1-ETO fusion transcription factor is generated by the t(8;21) translocation, which is present in approximately 4%-12% of adult and 12%-30% of pediatric acute myeloid leukemia (AML) patients. Both human and mouse models of AML have demonstrated that AML1-ETO is insufficient for leukemogenesis in the absence of secondary events. In this review, we discuss the pathogenetic insights that have been gained from identifying the various events that can cooperate with AML1-ETO to induce AML in vivo. We also discuss potential therapeutic strategies for t(8;21) positive AML that involve targeting the fusion protein itself, the proteins that bind to it, or the genes that it regulates. Recently published studies suggest that a targeted therapy for t(8;21) positive AML is feasible and may be coming sometime soon.
    No preview · Article · Aug 2012 · Frontiers of Medicine
Show more