Inhibition of RhoA but not ROCK induces chondrogenesis of chick limb mesenchymal cells

ArticleinBiochemical and Biophysical Research Communications 418(3):500-5 · February 2012with5 Reads
DOI: 10.1016/j.bbrc.2012.01.053 · Source: PubMed
Cell shape change and cytoskeletal reorganization are known to be involved in the chondrogenesis. Negative role of RhoA, a cytoskeleton-regulating protein, and its downstream target, Rho-associated protein kinase (ROCK) in the chondrogenesis has been studied in many different culture systems including primary chondrocytes, chondrogenic cell lines, dedifferentiated chondrocytes, and micromass culture of mesenchymal cells. To further investigate the role of RhoA and ROCK in the chondrogenesis, we examined the RhoA-ROCK-myosin light chains (MLC) pathway in low density culture of chick limb bud mesenchymal cells. We observed for the first time that inhibition of RhoA by C3 cell-permeable transferase, CT04, induced chondrogenesis of undifferentiated mesenchymal single cells following dissolution of actin stress fibers. Inhibition of RhoA activity by CT04 was confirmed by pull down assay using the Rho-GTP binding domain of Rhotekin. CT04 also inhibited ROCK activity. In contrast, inhibition of ROCK by Y27632 neither altered the actin stress fibers nor induced chondrogenesis. In addition, inhibition of RhoA or ROCK did not affect the phosphorylation of MLC. Inhibition of myosin light chain kinase (MLCK) by ML-7 or inhibition of myosin ATPase with blebbistatin dissolved actin stress fibers and induced chondrogenesis. ML-7 reduced the MLC phosphorylation. Taken together, our current study suggests that RhoA uses other pathway than ROCK/MLC in the modulation of actin stress fibers and chondrogenesis. Our data also imply that, irrespective of mechanisms, dissolution of actin stress fibers is crucial for chondrogenesis.
    • "Inhibition of regulatory metabolites in some pathways like RhoA, which is a negative actin cytoskeleton-regulating protein, enhances chondrogenesis . However, the inhibition of the other downstream metabolite in this pathway, Rho-associated protein kinase (ROCK), does not affect chondrogenesis, suggesting that there are unknown alternative pathways [41]. 2.2. "
    [Show abstract] [Hide abstract] ABSTRACT: Statement of significance: It is well known the importance of biomechanical cues in chondrogenesis. This paper reviews the existing literature on the effect of mechanical stimulation on chondrogenic differentiation of mesenchymal stem cells in order to regenerate hyaline cartilage. Contradictory results found with respect to the effect of different modes of external loading can be explained by the different properties of the scaffolding system that holds the cells, which determine cell adhesion and morphology and spatial distribution of cells, as well as the stress transmission to the cells. Thus, this review seeks to provide an insight into the interplay between external loading program and scaffold properties during chondrogenic differentiation. The review of the literature reveals an important gap in the knowledge in this field and encourages new experimental studies. The main issue is that in each of the few cases in which the interplay is investigated, just two groups of scaffolds are compared, leaving intermediate adhesion conditions out of study. The authors propose broader studies implementing new high-throughput techniques for mechanical characterization of tissue engineering constructs and the inclusion of fatigue analysis as support methodology to more exhaustive mechanical characterization.
    Full-text · Article · Jan 2016
    • "However , BepE was not able to potentiate any stress fibers when using the ROCK inhibitor Y27632. Based on these observations, BepE could be a factor that directly (or indirectly) activates RhoA independently of Rho inhibitor 1-mediated ADP-ribosylation at asparagine 41 [33]. The VirB T4SSs of bartonellae and its multiple Bep effectors evolved as a toolbox facilitating the adaptation to specific mammalian reservoir hosts [15,55]. "
    [Show abstract] [Hide abstract] ABSTRACT: Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that infected dermal dendritic cells may be involved in disseminating Bartonella towards the blood stream in a BepE-dependent manner.
    Full-text · Article · Jun 2014
    • "Further analyses of the data gained in this study revealed that these differentially expressed proteins from cMSCs were related to cytoskeletal , metabolic enzymes, and biosynthesis proteins , which may have contributed to the ineffectiveness of these differentiated cells in cartilage repair. In general, the actin cytoskeleton regulation of stem cell is essential for chondrogenesis [14] where TGF-β rapidly activates PI3K/Akt pathway towards the reorganization of actin filament and cell migration [15]. However, this study demonstrates that cofilin-1 (CFL1), myosin light chain (MLC6B) and transgelin-2 (TAGLN2) were highly modulated in MSC towards chondrogenic lineage in vitro. "
    [Show abstract] [Hide abstract] ABSTRACT: Objective: This preliminary study aims to determine the differentially expressed proteins from chondrogenic differentiated multipotent stromal cells (cMSCs) in comparison to undifferentiated multipotent stromal cells (MSCs) and adult chondrocytes (ACs). Methods: ACs and bone marrow-derived MSCs were harvested from New Zealand White rabbits (n = 3). ACs and cMSCs were embedded in alginate and were cultured using a defined chondrogenic medium containing transforming growth factor-beta 3 (TGF-β3). Chondrogenic expression was determined using type-II collagen, Safranin-O staining and glycosaminoglycan analyses. Two-dimensional gel electrophoresis (2-DE) was used to isolate proteins from MSCs, cMSCs and ACs before being identified using liquid chromatography-mass spectrometry (LC-MS). The differentially expressed proteins were then analyzed using image analysis software. Results: Both cMSCs and ACs were positively stained with type-II collagen and safranin-O. The expression of glycosaminoglycan in cMSCs was comparable to AC at which the highest level was observed at day-21 (p>0.05). Six protein spots were found to be most differentially expressed between MSCs, cMSCs and ACs. The protein spots cofilin-1 (CFL1) and glycealdehyde-3-phosphate dehydrogenase (GAPD) from cMSCs had expression levels similar to that of ACs whereas the others (ie. MYL6B, ALDOA, TAGLN2, EF1-alpha), did not match the expression level of ACs. Conclusion: Despite having similar phenotypic expressions to ACs, cMSCs expressed proteins which were not typically expected. This may explain the reason for the unexplained lack of improvement in cartilage repair outcomes reported in previous studies.
    Full-text · Article · Dec 2013
Show more