Brain Viscoelasticity Alteration in Chronic-Progressive Multiple Sclerosis

Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany.
PLoS ONE (Impact Factor: 3.23). 01/2012; 7(1):e29888. DOI: 10.1371/journal.pone.0029888
Source: PubMed


Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE) is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS) is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS.
We determined viscoelastic parameters of the brain parenchyma in 23 MS patients with primary or secondary chronic progressive disease course in comparison to 38 age- and gender-matched healthy individuals by multifrequency MRE, and correlated the results with clinical data, T2 lesion load and brain volume. Two viscoelastic parameters, the shear elasticity μ and the powerlaw exponent α, were deduced according to the springpot model and compared to literature values of relapsing-remitting MS.
In chronic-progressive MS patients, μ and α were reduced by 20.5% and 6.1%, respectively, compared to healthy controls. MR volumetry yielded a weaker correlation: Total brain volume loss in MS patients was in the range of 7.5% and 1.7% considering the brain parenchymal fraction. All findings were significant (P<0.001).
Chronic-progressive MS disease courses show a pronounced reduction of the cerebral shear elasticity compared to early relapsing-remitting disease. The powerlaw exponent α decreased only in the chronic-progressive stage of MS, suggesting an alteration in the geometry of the cerebral mechanical network due to chronic neuroinflammation.

Download full-text


Available from: Friedemann Paul
  • Source
    • "CNS tissue is mechanically heterogeneous at a length scale relevant to individual cells (Elkin et al., 2007; Christ et al., 2010; Franze et al., 2011; Iwashita et al., 2014; Koser et al., 2015). Furthermore, its mechanical properties may alter with age (Sack et al., 2011; Arani et al., 2015) and in pathological conditions (Murphy et al., 2011; Riek et al., 2012; Schregel et al., 2012; Streitberger et al., 2012; Chauvet et al., 2015). Thus, microglia are exposed to varying mechanical signals on their way to sites of damage. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglial cells are key players in the primary immune response of the central nervous system. They are highly active and motile cells that chemically and mechanically interact with their environment. While the impact of chemical signaling on microglia function has been studied in much detail, the current understanding of mechanical signaling is very limited. When cultured on compliant substrates, primary microglial cells adapted their spread area, morphology, and actin cytoskeleton to the stiffness of their environment. Traction force microscopy revealed that forces exerted by microglia increase with substrate stiffness until reaching a plateau at a shear modulus of ~5 kPa. When cultured on substrates incorporating stiffness gradients, microglia preferentially migrated toward stiffer regions, a process termed durotaxis. Lipopolysaccharide-induced immune-activation of microglia led to changes in traction forces, increased migration velocities and an amplification of durotaxis. We finally developed a mathematical model connecting traction forces with the durotactic behavior of migrating microglial cells. Our results demonstrate that microglia are susceptible to mechanical signals, which could be important during central nervous system development and pathologies. Stiffness gradients in tissue surrounding neural implants such as electrodes, for example, could mechanically attract microglial cells, thus facilitating foreign body reactions detrimental to electrode functioning.
    Full-text · Article · Sep 2015 · Frontiers in Cellular Neuroscience
  • Source
    • "Although each of these methods has been used in previous studies (Ballyns et al. 2012; Chen et 7 al. 2009; Chen et al. 2013a; Clayton et al. 2013; Gennisson et al. 2010; Manduca et al. 2003; 8 Muthupillai et al. 1995; Streitberger et al. 2012; Sumanaweera and Liu 2005), the combination 9 of these methods was chosen to measure maps of viscoelastic properties in tendons. 10 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study were to describe an elastography method for measuring localized viscoelastic properties of tendons and to discuss the initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction-specific wave speeds were calculated using local frequency estimation. Maps of viscoelastic properties were obtained using a pixel-wise curve fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels with those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as a function of frequency, which highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon indicated that it is feasible to quantify local viscoelastic properties. Similarly, measurement in the semitendinosus tendon revealed substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential to evaluate localized changes in tendon viscoelastic properties caused by injury and during recovery in a clinical setting. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Mar 2015 · Ultrasound in medicine & biology
  • Source
    • "While this technology is still in its infancy, there is hope that it will soon deliver valuable insight into the regional and temporal variation of brain tissue properties during development, aging, and disease progression (Sack et al. 2011). Magnetic resonance elastography has the potential to become a powerful diagnostic tool for various pathologies including multiple sclerosis (Streitberger et al. 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today's open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.
    Full-text · Article · Feb 2015 · Biomechanics and Modeling in Mechanobiology
Show more