Y chromosome haplogroups and prostate cancer in populations of European and Ashkenazi Jewish ancestry

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Human Genetics (Impact Factor: 4.82). 01/2012; 131(7):1173-85. DOI: 10.1007/s00439-012-1139-5
Source: PubMed


Genetic variation on the Y chromosome has not been convincingly implicated in prostate cancer risk. To comprehensively analyze the role of inherited Y chromosome variation in prostate cancer risk in individuals of European ancestry, we genotyped 34 binary Y chromosome markers in 3,995 prostate cancer cases and 3,815 control subjects drawn from four studies. In this set, we identified nominally significant association between a rare haplogroup, E1b1b1c, and prostate cancer in stage I (P = 0.012, OR = 0.51; 95% confidence interval 0.30–0.87). Population substructure of E1b1b1c carriers suggested Ashkenazi Jewish ancestry, prompting a replication phase in individuals of both European and Ashkenazi Jewish ancestry. The association was not significant for prostate cancer overall in studies of either Ashkenazi Jewish (1,686 cases and 1,597 control subjects) or European (686 cases and 734 control subjects) ancestry (Pmeta = 0.078), but a meta-analysis of stage I and II studies revealed a nominally significant association with prostate cancer risk (Pmeta = 0.010, OR = 0.77; 95% confidence interval 0.62–0.94). Comparing haplogroup frequencies between studies, we noted strong similarities between those conducted in the US and France, in which the majority of men carried R1 haplogroups, resembling Northwestern European populations. On the other hand, Finns had a remarkably different haplogroup distribution with a preponderance of N1c and I1 haplogroups. In summary, our results suggest that inherited Y chromosome variation plays a limited role in prostate cancer etiology in European populations but warrant follow-up in additional large and well characterized studies of multiple ethnic backgrounds.

Electronic supplementary material
The online version of this article (doi:10.1007/s00439-012-1139-5) contains supplementary material, which is available to authorized users.

Download full-text


Available from: Zhaoming Wang
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: French population, despite of its crucial geographic location for repopulation movements of Europe across time, it has been insufficiently characterized at the genetic level, especially for Y-chromosomal DNA variation. In order to make a genetic structure characterization, we have analyzed the Y-chromosome diversity of 558 male individuals, scattered along 7 different French regions: Alsace (Strasbourg), Auvergne (Clermont-Ferrand), Bretagne (Rennes), Île-de-France (Paris), Midi-Pyrénées (Toulouse), Nord-Pas-de-Calais (Lille) and Provence-Alpes-Côte d’Azur (Marseille). A total of 17 Y-chromosome STRs and 27 Y-chromosome SNPs were genotyped for each individual. Even though we find that most of the individual populations in France were not differentiated from each other, Bretagne population shows population substructure, an important fact to be considered when establishing general population databases.
    Full-text · Article · Mar 2014 · Forensic Science International: Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND Evidence supports the possibility of a role of the Y chromosome in prostate cancer, but controversy exists.METHODSA novel analysis of a computerized population-based resource linking genealogy and cancer data was used to test the hypothesis of a role of the Y chromosome in prostate cancer predisposition. Using a statewide cancer registry from 1966 linked to a computerized genealogy representing over 1.2 million descendants of the Utah pioneers, 1,000 independent sets of males, each set hypothesized to share the same Y chromosome as represented in genealogy data, were tested for a significant excess of prostate cancer.RESULTSMultiple Y chromosomes representing thousands of potentially at-risk males were identified to have a significant excess risk for prostate cancer.CONCLUSIONS This powerful and efficient in silico test of an uncommon mode of inheritance has confirmed evidence for Y chromosome involvement in prostate cancer. Prostate © 2014 Wiley Periodicals, Inc.
    No preview · Article · Jun 2014 · The Prostate
  • [Show abstract] [Hide abstract]
    ABSTRACT: The association between the Y chromosome haplogroup D2 and risk of azoospermia and low sperm motility has been previously studied, and it was indicated that haplogroups DE (YAP lineage) are associated with prostate cancer risk in Japanese males. Our assumption had been that Y chromosome haplogroups may be associated with sex hormone levels, because sex hormones have been deemed responsible for spermatogenesis and carcinogenesis. In this study, we assessed the association between Y chromosome haplogroups and sex hormone levels, including those of testosterone, sex hormone-binding globulin (SHBG), follicle-stimulating hormone (FSH), luteinizing hormone (LH), inhibin-B, and calculated free testosterone (cFT), in 901 young men from the general Japanese population (cohort 1) and 786 Japanese men of proven fertility (cohort 2). We found that the haplogroup D2a1 was significantly associated with high LH levels in a combined analysis involving two cohorts (β = 0.068, SE = 0.025, p = 0.0075), following correction for multiple testing. To date, this result is the first evidence that implicates Y chromosome haplogroups in an association with sex hormone levels. © 2015 American Society of Andrology and European Academy of Andrology.
    No preview · Article · Apr 2015 · Andrology
Show more