Plasmodium vivax apicoplast genome: A comparative analysis of major genes from Indian field isolates

Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
Acta tropica (Impact Factor: 2.27). 04/2012; 122(1):138-49. DOI: 10.1016/j.actatropica.2012.01.007
Source: PubMed


The apicomplexan parasite Plasmodium vivax is responsible for causing more than 70% of human malaria cases in Central and South America, Southeastern Asia and the Indian subcontinent. The rising severity of the disease and the increasing incidences of resistance shown by this parasite towards usual therapeutic regimens have necessitated investigation of putative novel drug targets to combat this disease. The apicoplast, an organelle of procaryotic origin, and its circular genome carrying genes of possible functional importance, are being looked upon as potential drug targets. The genes on this circular genome are believed to be highly conserved among all Plasmodium species. Till date, the plastid genome of P. falciparum, P. berghei and P. chabaudi have been detailed while partial sequences of some genes from other parasites including P. vivax have been studied for identifying evolutionary positions of these parasites. The functional aspects and significance of most of these genes are still hypothetical. In one of our previous reports, we have detailed the complete sequence, as well as structural and functional characteristics of the Elongation factor encoding tufA gene from the plastid genome of P. vivax. We present here the sequences of large and small subunit rRNA (lsu and ssu rRNA) genes, sufB (ORF470) gene, RNA polymerase (rpo B, C) subunit genes and clpC (casienolytic protease) gene from the plastid genome of P. vivax. A comparative analysis of these genes between P. vivax and P. falciparum reveals approximately 5-16% differences. A codon usage analysis of major plastid genes has shown a high frequency of codons rich in A/T at any or all of the three positions in all the species. TTA, AAT, AAA, TAT, and ATA are the major preferred codons. The sequences, functional domains and structural analysis of respective proteins do not show any variations in the active sites. A comparative analysis of these Indian P. vivax plastid genome encoded genes has also been done to understand the evolutionary position of the Indian parasite in comparison to other Plasmodium species.

Download full-text


Available from: Gagandeep Singh Saggu
  • Source
    • "P. falciparum 244K gene expression array was designed on Agilent platform with probes having 60-mer oligonucleotides representing the 3D7 transcript sequences (PlasmoDB version 5.3) (Aurrecoechea et al., 2009; Gardner et al., 2002), NCBI EST sequences of P. falciparum and apicoplast sequences of P. falciparum (Wilson et al., 1996) and P. vivax (Saxena et al., 2012). Out of 5532 P. falciparum transcript sequences available in the PlasmoDB (Release 5.3) (Aurrecoechea et al., 2009; Gardner et al., 2002), probes were designed with an average of 8 probes per sequence in sense as well as in antisense direction (Strand specific). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms regulating gene expression in malaria parasites are not well understood. Little is known about how the parasite regulates its gene expression during transition from one developmental stage to another and in response to various environmental conditions. Parasites in a diseased host face environments which differ from the static, well adapted in vitro conditions. Parasites thus need to adapt quickly and effectively to these conditions by establishing transcriptional states which are best suited for better survival. With the discovery of natural antisense transcripts (NATs) in this parasite and considering the various proposed mechanisms by which NATs might regulate gene expression, it has been speculated that these might be playing a critical role in gene regulation. We report here the diversity of NATs in this parasite, using isolates taken directly from patients with differing clinical symptoms caused by malaria infection. Using a custom designed strand specific whole genome microarray, a total of 797 NATs targeted against annotated loci have been detected. Out of these, 545 NATs are unique to this study. The majority of NATs were positively correlated with the expression pattern of the sense transcript. However, 96 genes showed a change in sense/antisense ratio on comparison between uncomplicated and complicated disease conditions. The antisense transcripts map to a broad range of biochemical/ metabolic pathways, especially pathways pertaining to the central carbon metabolism and stress related pathways. Our data strongly suggests that a large group of NATs detected here are unannotated transcription units antisense to annotated gene models. The results reveal a previously unknown set of NATs that prevails in this parasite, their differential regulation in disease conditions and mapping to functionally well annotated genes. The results detailed here call for studies to deduce the possible mechanism of action of NATs, which would further help in understanding the in vivo pathological adaptations of these parasites.
    Full-text · Article · Mar 2014 · Experimental Parasitology
  • Source
    • "Similarly probes were designed with an average of 6 probes per sequence in sense as well as in antisense direction for the 19204 P. vivax ESTs and whole genome shotgun sequences available in NCBI database (2007). The 3 P. vivax apicoplast sequences (Saxena et al., 2012) and 6 P. falciparum apicoplast sequences (Wilson et al., 1996) had an average of 10 probes per sequence in sense as well as in antisense direction. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax is the most geographically widespread human malaria parasite causing approximately 130-435 million infections annually. It is an economic burden in many parts of the world and poses a public health challenge along with the other Plasmodium sp. Despite this the biology of this parasite is less studied and poorly understood. Emerging evidence of severe complications due to infections by this parasite provides an impetus to focus research on the same. Investigating this parasite directly from the infected patients is the best way to study its biology and pathogenic mechanisms. Gene expression studies of this parasite directly obtained from the patients has provided evidence of gene regulation resulting in varying amount of transcript levels in the different blood stages. However, the mechanisms regulating gene expression in malaria parasites are not well understood. Discovery of Natural Antisense Transcripts (NATs) in P. falciparum has suggested that these might play an important role in regulating gene expression. We report here the genome-wide occurrence of NATs in P. vivax parasites from patients with differing clinical symptoms. A total of 1348 NATs against annotated gene loci have been detected using a custom designed microarray with strand specific probes. Majority of NATs identified from this study shows positive correlation with the expression pattern of the sense (S) transcript. Our data also shows condition specific expression patterns of varying S and antisense (AS) transcript levels. Genes with AS transcripts enrich to various biological processes. To our knowledge this is the first report on the presence of NATs from P. vivax obtained from infected patients with different disease complications. The data suggests differential regulation of gene expression in diverse clinical conditions, as shown by differing sense/antisense ratios and would lead to future detailed investigations of gene regulation.
    Full-text · Article · Oct 2013 · Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax is causing increasingly more cases of severe malaria worldwide. There is an urgent need to reexamine the clinical spectrum and burden of P. vivax so that adequate control measures can be implemented against this emerging but neglected disease. Herein, we report a case of renal acute cortical necrosis and acute kidney injury (AKI) associated with P. vivax monoinfection. Her initial serum creatinine was 7.3 mg/dL on admission. Modification of Diet in Renal Disease (MDRD) Study glomerular filtration rate (GFR) value was 7 mL/min/1.73 m(2) (normal kidney function-GFR above 90 mL/min/1.73 m(2) and no proteinuria). On follow-up, 5 months later, her SCr. was 2.43 mg/dl with no proteinuria. MDRD GFR value was 24 mL/min/1.73 m(2) suggesting severe chronic kidney disease (CKD; GFR less than 60 or kidney damage for at least 3 months), stage 4. Our case report highlights the fact that P. vivax malaria is benign by name but not always by nature. AKI associated with P. vivax malaria can lead to CKD. Further studies are needed to determine why P. vivax infections are becoming more severe.
    No preview · Article · Jun 2012 · Parasitology Research
Show more