Structure of C-terminal Tandem BRCT Repeats of Rtt107 Protein Reveals Critical Role in Interaction with Phosphorylated Histone H2A during DNA Damage Repair

Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
Journal of Biological Chemistry (Impact Factor: 4.57). 01/2012; 287(12):9137-46. DOI: 10.1074/jbc.M111.311860
Source: PubMed


Rtt107 (regulator of Ty1 transposition 107; Esc4) is a DNA repair protein from Saccharomyces cerevisiae that can restore stalled replication forks following DNA damage. There are six BRCT (BRCA1 C-terminal) domains in Rtt107 that act as binding sites for other recruited proteins during DNA repair. Several Rtt107 binding
partners have been identified, including Slx4, Rtt101, Rad55, and the Smc5/6 (structural maintenance of chromosome) protein complex. Rtt107 can reportedly be recruited to chromatin in the presence of Rtt101 and Rtt109 upon DNA
damage, but the chromatin-binding site of Rtt107 has not been identified. Here, we report our investigation of the interaction
between phosphorylated histone H2A (γH2A) and the C-terminal tandem BRCT repeats (BRCT5-BRCT6) of Rtt107. The crystal structures of BRCT5-BRCT6 alone and in a complex with γH2A reveal the molecular basis of the Rtt107-γH2A interaction. We used in vitro mutagenesis and a fluorescence polarization assay to confirm the location of the Rtt107 motif that is crucial for this interaction.
In addition, these assays indicated that this interaction requires the phosphorylation of H2A. An in vivo phenotypic analysis in yeast demonstrated the critical role of BRCT5-BRCT6 and its interaction with γH2A during the DNA damage response. Our results shed new light on the molecular mechanism by which
Rtt107 is recruited to chromatin in response to stalled DNA replication forks.

Full-text preview

Available from:
  • Source
    • "This observation might explain why ECT2 (22-326) binds peptide pS164 with a relatively weak interaction (K d = 42 ± 4.1 lM), which is $20-fold lower than the binding ability of TopBP1 BRCT1 domain with phosphorylated peptide (K d = 2.1 lM) [17]. This interaction is also a little weaker than those determined for other BRCT domains with the dissociation constants (K d ) in a range of about 0.1–10 lM [38] [43] [50]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Homo sapiens ECT2 is a cell cycle regulator that plays critical roles in cytokinesis. ECT2 activity is restrained during interphase via intra-molecular interactions that involve its N-terminal triple-BRCT-domain and its C-terminal DH-PH domain. At anaphase, this self-inhibitory mechanism is relieved by Plk1-phosphorylated CYK-4, which directly engages the ECT2 BRCT domain. To provide a structural perspective for this auto-inhibitory property, we solved the crystal structure of the ECT2 triple-BRCT-domain. In addition, we systematically analyzed the interaction between the ECT2 BRCT domains with phospho-peptides derived from its binding partner CYK-4, and have identified Ser164 as the major phospho-residue that links CYK-4 to the second ECT2 BRCT domain.
    Full-text · Article · Jul 2014 · FEBS Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribonucleotide reductase (RNR) and deoxycytidylate deaminase (dCMP deaminase) are pivotal allosteric enzymes required to maintain adequate pools of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis and repair. Whereas RNR inhibition slows DNA replication and activates checkpoint responses, the effect of dCMP deaminase deficiency is largely unknown. Here, we report that deleting the Schizosaccharomyces pombe dcd1+ dCMP deaminase gene (SPBC2G2.13c) increases dCTP ∼30-fold and decreases dTTP ∼4-fold. In contrast to the robust growth of a Saccharomyces cerevisiae dcd1Δ mutant, fission yeast dcd1Δ cells delay cell cycle progression in early S phase and are sensitive to multiple DNA-damaging agents, indicating impaired DNA replication and repair. DNA content profiling of dcd1Δ cells differs from an RNR-deficient mutant. Dcd1 deficiency activates genome integrity checkpoints enforced by Rad3 (ATR), Cds1 (Chk2), and Chk1 and creates critical requirements for proteins involved in recovery from replication fork collapse, including the γH2AX-binding protein Brc1 and Mus81 Holliday junction resolvase. These effects correlate with increased nuclear foci of the single-stranded DNA binding protein RPA and the homologous recombination repair protein Rad52. Moreover, Brc1 suppresses spontaneous mutagenesis in dcd1Δ cells. We propose that replication forks stall and collapse in dcd1Δ cells, burdening DNA damage and checkpoint responses to maintain genome integrity.
    Full-text · Article · Aug 2012 · Molecular and Cellular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In response to genotoxic stress, a transient arrest in cell-cycle progression enforced by the DNA-damage checkpoint (DDC) signalling pathway positively contributes to genome maintenance. Because hyperactivated DDC signalling can lead to a persistent and detrimental cell-cycle arrest, cells must tightly regulate the activity of the kinases involved in this pathway. Despite their importance, the mechanisms for monitoring and modulating DDC signalling are not fully understood. Here we show that the DNA-repair scaffolding proteins Slx4 and Rtt107 prevent the aberrant hyperactivation of DDC signalling by lesions that are generated during DNA replication in Saccharomyces cerevisiae. On replication stress, cells lacking Slx4 or Rtt107 show hyperactivation of the downstream DDC kinase Rad53, whereas activation of the upstream DDC kinase Mec1 remains normal. An Slx4-Rtt107 complex counteracts the checkpoint adaptor Rad9 by physically interacting with Dpb11 and phosphorylated histone H2A, two positive regulators of Rad9-dependent Rad53 activation. A decrease in DDC signalling results from hypomorphic mutations in RAD53 and H2A and rescues the hypersensitivity to replication stress of cells lacking Slx4 or Rtt107. We propose that the Slx4-Rtt107 complex modulates Rad53 activation by a competition-based mechanism that balances the engagement of Rad9 at replication-induced lesions. Our findings show that DDC signalling is monitored and modulated through the direct action of DNA-repair factors.
    Full-text · Article · Nov 2012 · Nature
Show more