Finding Ovarian Cancer

Journal of the National Cancer Institute (Impact Factor: 12.58). 01/2012; 104(2):82-3. DOI: 10.1093/jnci/djr518
Source: PubMed
Download full-text


Available from: Patricia Hartge
  • Source

    Full-text · Article · Apr 2012 · The Lancet Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Researchers developing biomarkers for early detection can determine the potential for clinical benefit at early stages of development. We provide the theoretical background showing the quantitative connection between biomarker levels in cases and controls and clinically meaningful risk measures, as well as a spreadsheet for researchers to use in their own research. We provide researchers with tools to decide whether a test is useful, whether it needs technical improvement, whether it may work only in specific populations, or whether any further development is futile. The methods described here apply to any method that aims to estimate risk of disease based on biomarkers, clinical tests, genetics, environment, or behavior. Significance: Many efforts go into futile biomarker development and premature clinical testing. In many instances, predictions for translational success or failure can be made early, simply based on critical analysis of case–control data. Our article presents well-established theory in a form that can be appreciated by biomarker researchers. Furthermore, we provide an interactive spreadsheet that links biomarker performance with specific disease characteristics to evaluate the promise of biomarker candidates at an early stage.
    Preview · Article · Jan 2013 · Cancer Discovery
  • [Show abstract] [Hide abstract]
    ABSTRACT: Currently available screening tests do not deliver the required sensitivity and specificity for accurate diagnosis of ovarian or endometrial cancer. Infrared (IR) spectroscopy of blood plasma or serum is a rapid, versatile, and relatively non-invasive approach which could characterize biomolecular alterations due to cancer and has potential to be utilized as a screening or diagnostic tool. In the past, no such approach has been investigated for its applicability in screening and/or diagnosis of gynaecological cancers. We set out to determine whether attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy coupled with a proposed classification machine could be applied to IR spectra obtained from plasma and serum for accurate class prediction (cancer vs. normal). Plasma and serum samples were obtained from ovarian cancer cases (n = 30), endometrial cancer cases (n = 30) and non-cancer controls (n = 30), and subjected to ATR-FTIR spectroscopy. Four derived datasets were processed to estimate the real-world diagnosis of ovarian and endometrial cancer. Classification results for ovarian cancer were remarkable (up to 96.7%), whereas endometrial cancer was classified with a relatively high accuracy (up to 81.7%). The results from different combinations of feature extraction and classification methods, and also classifier ensembles, were compared. No single classification system performed best for all different datasets. This demonstrates the need for a framework that can accommodate a diverse set of analytical methods in order to be adaptable to different datasets. This pilot study suggests that ATR-FTIR spectroscopy of blood is a robust tool for accurate diagnosis, and carries the potential to be utilized as a screening test for ovarian cancer in primary care settings. The proposed classification machine is a powerful tool which could be applied to classify the vibrational spectroscopy data of different biological systems (e.g., tissue, urine, saliva), with their potential application in clinical practice.
    No preview · Article · Jan 2013 · The Analyst
Show more