Target-Binding Proteins Based on the 10th Human Fibronectin Type III Domain (10Fn3)

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA.
Methods in enzymology (Impact Factor: 2.09). 12/2012; 503:135-56. DOI: 10.1016/B978-0-12-396962-0.00006-9
Source: PubMed


We describe concepts and methods for generating a family of engineered target-binding proteins designed on the scaffold of the 10th human fibronectin type III domain ((10)Fn3), an extremely stable, single-domain protein with an immunoglobulin-like fold but lacking disulfide bonds. Large libraries of possible target-binding proteins can be constructed on the (10)Fn3 scaffold by diversifying the sequence and length of its surface loops, which are structurally analogous to antibody complementarity-determining regions. Target-binding proteins with high affinity and specificity are selected from (10)Fn3-based libraries using in vitro evolution technologies such as phage display, mRNA display, or yeast-surface display. (10)Fn3-based target-binding proteins have binding properties comparable to those of antibodies, but they are smaller, simpler in architecture, and more user-friendly; as a consequence, these proteins are excellent building blocks for the construction of multidomain, multifunctional chains. The ease of engineering and robust properties of (10)Fn3-based target-binding proteins have been validated by multiple independent academic and industrial groups. In addition to performing well as specific in vitro detection reagents and research tools, (10)Fn3-based binding proteins are being developed as therapeutics, with the most advanced candidate currently in Phase II clinical trials.

25 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since its first application to antibody engineering 15 years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.
    No preview · Article · Mar 2012 · Archives of Biochemistry and Biophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report herein the unexpected temperature triggered self-assembly of proteins fused to thermally responsive elastin-like polypeptides (ELPs) into spherical micelles. A set of six ELP block copolymers (ELP(BC)) differing in hydrophilic and hydrophobic block lengths were genetically fused to two single domain proteins, thioredoxin (Trx) and a fibronectin type III domain (Fn3) that binds the α(v)β(3) integrin. The self-assembly of these protein-ELP(BC) fusions as a function of temperature was investigated by UV spectroscopy, light scattering, and cryo-TEM. Self-assembly of the ELP(BC) was unexpectedly retained upon fusion to the two proteins, resulting in the formation of spherical micelles with a hydrodynamic radius that ranged from 24 to 37 nm, depending on the protein and ELP(BC). Cryo-TEM images confirmed the formation of spherical particles with a size that was consistent with that measured by light scattering. The bioactivity of Fn3 was retained when presented by the ELP(BC) micelles, as indicated by the enhanced uptake of the Fn3-decorated ELP(BC) micelles in comparison to the unimer by cells that overexpress the α(v)β(3) integrin. The fusion of single domain proteins to ELP(BC)s may provide a ubiquitous platform for the multivalent presentation of proteins.
    Full-text · Article · Apr 2012 · Biomacromolecules
  • [Show abstract] [Hide abstract]
    ABSTRACT: Engineered binding proteins derived from non-antibody scaffolds constitute an increasingly prominent class of reagents in both research and therapeutic applications. The growing number of crystal structures of these 'alternative' scaffold-based binding proteins in complex with their targets illustrate the mechanisms of molecular recognition that are common among these systems and those unique to each. This information is useful for critically assessing and improving/expanding engineering strategies. Furthermore, the structural features of these synthetic proteins produced under tightly controlled, directed evolution deepen our understanding of the underlying principles governing molecular recognition.
    No preview · Article · Jun 2012 · Current Opinion in Structural Biology
Show more