Article

Current Treatment Strategies for Multiple Sclerosis - Efficacy Versus Neurological Adverse Effects

Department of Neurology, Technische Universität München, Munich, Germany.
Current pharmaceutical design (Impact Factor: 3.45). 02/2012; 18(2):209-19. DOI: 10.2174/138161212799040501
Source: PubMed

ABSTRACT

Recent years have broadened the spectrum of therapeutic strategies and specific agents for treatment of multiple sclerosis (MS). While immune-modulating drugs remain the first-line agents for MS predominantly due to their benign safety profile, our growing understanding of key processes in initiation and progression of MS has pioneered development of new agents with specific targets. One concept of these novel drugs is to hamper migration of immune cells towards the affected central nervous system (CNS). The first oral drug approved for MS therapy, fingolimod inhibits egress of lymphocytes from lymph nodes; the monoclonal antibody natalizumab prevents inflammatory CNS infiltration by blocking required adhesion molecules. The second concept is to deplete T cells and/or B cells from the peripheral circulation using highly specific monoclonal antibodies such as alemtuzumab (anti-CD52) or rituximab/ocrelizumab (anti-CD20). All of these novel, highly effective agents are a substantial improvement in our therapeutic armamentarium; however, they have in common to potentially lower the abundance of immune cells within the CNS, thereby collaterally affecting immune surveillance within this well-controlled compartment. In this review, we aim to critically evaluate the risk/benefit ratio of therapeutic strategies in treatment of MS with a specific focus on infectious neurological side effects.

0 Followers
 · 
17 Reads
  • Source
    • "The etiology of MS is still incompletely understood; however, it seems that the main etiopathogenic event is represented by an unusual response of the immune system cells (T and B lymphocytes) against myelin sheaths of neurons[2]. To date, current treatments for MS only offer palliative relief without providing a cure, and many are also associated with adverse effects that limit their long-term utility[3]. Recently, the potential role of mesenchymal stem cells (MSCs), derived especially from bone marrow, in promoting tissue repair and disease control has been investigated by using an experimental autoimmune encephalomyelitis (EAE) model4567, the most common animal model that mimics the main features of human MS[8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis is a demyelinating disease mostly of autoimmune origin that affects and damages the central nervous system, leading to a disabling condition. The aim of the present study was to investigate whether administration of mesenchymal stem cells from human periodontal ligament (hPDLSCs) could ameliorate multiple sclerosis progression by exerting neuroprotective effects in an experimental model of autoimmune encephalomyelitis (EAE). EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG) 35–55 in C57BL/6 mice. After immunization, mice were observed every 48 hours for signs of EAE and weight loss. At the onset of disease, approximately 14 days after immunization, EAE mice were subjected to a single intravenous injection of hPDLSCs (10 6 cells/150 μl) into the tail vein. At the point of animal sacrifice on day 56 after EAE induction, spinal cord and brain tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results reveal that treatment with hPDLSCs may exert neuroprotective effects against EAE, diminishing both clinical signs and histological score typical of the disease (lymphocytic infiltration and demyelination) probably through the production of neurotrophic factors (results focused on brain-derived neurotrophic factor and nerve growth factor expression). Furthermore, administration of hPDLSCs modulates expression of inflammatory key markers (tumor necrosis factor-α, interleukin (IL)-1β, IL-10, glial fibrillary acidic protein, Nrf2 and Foxp3), the release of CD4 and CD8α T cells, and the triggering of apoptotic death pathway (data shown for cleaved caspase 3, p53 and p21). In light of the achieved results, transplantation of hPDLSCs may represent a putative novel and helpful tool for multiple sclerosis treatment. These cells could have considerable implication for future therapies for multiple sclerosis and this study may represent the starting point for further investigations.
    Full-text · Article · Dec 2016 · Stem Cell Research & Therapy
  • Source
    • "Anti-inflammatory agents primarily suppress synchronized CNS infiltration causing relapses, while smoldering inflammation within the CNS causing progressive MS is still in need of good therapy. Some of the existing agents cause serious side effects, running a risk of opportunistic infections or secondary autoimmunity (Br€ uck et al., 2013; Coles et al., 1999; Cossburn et al., 2011; Langer-Gould et al., 2005; Weber et al., 2012). A search for alternative anti-inflammatory compounds should thus also consider novel targets. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions.GLIA 2015. © 2015 Wiley Periodicals, Inc.
    Full-text · Article · Mar 2015 · Glia
  • Source
    • "The unique feature of anti-SEMA4D therapy is that it combines independent mechanisms of action that overlap with the anti-inflammatory effects of several of these clinical agents and further extends activity to restoring and protecting the integrity of both BBB and myelinated axons. While approved immunosuppressive and anti-inflammatory drugs have been shown to be effective in transiently suppressing MS-related symptoms and relapse frequency, many have significant side-effects with varying degrees of severity (Weber et al., 2012). In animal studies and ongoing phase 1 clinical trials to date, anti-SEMA4D antibody administration has not been associated with significant overt toxicity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by immune cell infiltration of CNS, blood–brain barrier (BBB) breakdown, localized myelin destruction, and progressive neuronal degeneration. There exists a significant need to identify novel therapeutic targets and strategies that effectively and safely disrupt and even reverse disease pathophysiology. Signaling cascades initiated by semaphorin 4D (SEMA4D) induce glial activation, neuronal process collapse, inhibit migration and differentiation of oligodendrocyte precursor cells (OPCs), and disrupt endothelial tight junctions forming the BBB. To target SEMA4D, we generated a monoclonal antibody that recognizes mouse, rat, monkey and human SEMA4D with high affinity and blocks interaction between SEMA4D and its cognate receptors. In vitro, anti-SEMA4D reverses the inhibitory effects of recombinant SEMA4D on OPC survival and differentiation. In vivo, anti-SEMA4D significantly attenuates experimental autoimmune encephalomyelitis in multiple rodent models by preserving BBB integrity and axonal myelination and can be shown to promote migration of OPC to the site of lesions and improve myelin status following chemically-induced demyelination. Our study underscores SEMA4D as a key factor in CNS disease and supports the further development of antibody-based inhibition of SEMA4D as a novel therapeutic strategy for MS and other neurologic diseases with evidence of demyelination and/or compromise to the neurovascular unit.
    Full-text · Article · Oct 2014 · Neurobiology of Disease
Show more