Fine-grained pitch processing of music and speech in congenital amusia

CNRS, UMR5292,INSERM, U1028, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Lyon, F-69000, France.
The Journal of the Acoustical Society of America (Impact Factor: 1.5). 12/2011; 130(6):4089-96. DOI: 10.1121/1.3658447
Source: PubMed


Congenital amusia is a lifelong disorder of music processing that has been ascribed to impaired pitch perception and memory. The present study tested a large group of amusics (n=17) and provided evidence that their pitch deficit affects pitch processing in speech to a lesser extent: Fine-grained pitch discrimination was better in spoken syllables than in acoustically matched tones. Unlike amusics, control participants performed fine-grained pitch discrimination better for musical material than for verbal material. These findings suggest that pitch extraction can be influenced by the nature of the material (music vs speech), and that amusics' pitch deficit is not restricted to musical material, but extends to segmented speech events.

Download full-text


Available from: Elena Rusconi, Dec 14, 2013
  • Source
    • "Individuals with more extensive musical training are better able to learn a foreign language that uses pitch specifically as a phonological contrast [25], and individuals with greater musical aptitude demonstrate greater proficiency with second-language phonological processing generally [26]. Listeners exhibiting musical tone-deafness (amusia) are also likely to be impaired in their ability to make linguistic distinctions on basis of pitch [27-30]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Language and music epitomize the complex representational and computational capacities of the human mind. Strikingly similar in their structural and expressive features, a longstanding question is whether the perceptual and cognitive mechanisms underlying these abilities are shared or distinct - either from each other or from other mental processes. One prominent feature shared between language and music is signal encoding using pitch, conveying pragmatics and semantics in language and melody in music. We investigated how pitch processing is shared between language and music by measuring consistency in individual differences in pitch perception across language, music, and three control conditions intended to assess basic sensory and domain-general cognitive processes. Individuals' pitch perception abilities in language and music were most strongly related, even after accounting for performance in all control conditions. These results provide behavioral evidence, based on patterns of individual differences, that is consistent with the hypothesis that cognitive mechanisms for pitch processing may be shared between language and music.
    Full-text · Article · Aug 2013 · PLoS ONE
  • Source
    • "Although amusia is thought of as a music-specific deficit involving pitch detection and identification [9], [11], some studies suggest that the deficit in pitch processing may extend to pitch discrimination in spoken syllables [30], lexical tones [31], and affects the intonation perception of prosody [32]–[35]. Support for this latter suggestion has been shown in that amusics show impaired processing of emotional prosody [36]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pitch processing is a critical ability on which humans' tonal musical experience depends, and which is also of paramount importance for decoding prosody in speech. Congenital amusia refers to deficits in the ability to properly process musical pitch, and recent evidence has suggested that this musical pitch disorder may impact upon the processing of speech sounds. Here we present the first electrophysiological evidence demonstrating that individuals with amusia who speak Mandarin Chinese are impaired in classifying prosody as appropriate or inappropriate during a speech comprehension task. When presented with inappropriate prosody stimuli, control participants elicited a larger P600 and smaller N100 relative to the appropriate condition. In contrast, amusics did not show significant differences between the appropriate and inappropriate conditions in either the N100 or the P600 component. This provides further evidence that the pitch perception deficits associated with amusia may also affect intonation processing during speech comprehension in those who speak a tonal language such as Mandarin, and suggests music and language share some cognitive and neural resources.
    Full-text · Article · Jul 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Music and speech are often cited as characteristically human forms of communication. Both share the features of hierarchical structure, complex sound systems, and sensorimotor sequencing demands, and both are used to convey and influence emotions, among other functions [1]. Both music and speech also prominently use acoustical frequency modulations, perceived as variations in pitch, as part of their communicative repertoire. Given these similarities, and the fact that pitch perception and production involve the same peripheral transduction system (cochlea) and the same production mechanism (vocal tract), it might be natural to assume that pitch processing in speech and music would also depend on the same underlying cognitive and neural mechanisms. In this essay we argue that the processing of pitch information differs significantly for speech and music; specifically, we suggest that there are two pitch-related processing systems, one for more coarse-grained, approximate analysis and one for more fine-grained accurate representation, and that the latter is unique to music. More broadly, this dissociation offers clues about the interface between sensory and motor systems, and highlights the idea that multiple processing streams are a ubiquitous feature of neuro-cognitive architectures.
    Full-text · Article · Jul 2012 · PLoS Biology
Show more