Osteoblastic/Cementoblastic and Neural Differentiation of Dental Stem Cells and Their Applications to Tissue Engineering and Regenerative Medicine

Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
Tissue Engineering Part B Reviews (Impact Factor: 4.64). 03/2012; 18(3):235-44. DOI: 10.1089/ten.TEB.2011.0642
Source: PubMed


Recently, dental stem and progenitor cells have been harvested from periodontal tissues such as dental pulp, periodontal ligament, follicle, and papilla. These cells have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and multilineage differentiation capacity. These dental stem and progenitor cells are known to be derived from ectomesenchymal origin formed during tooth development. A great deal of research has been accomplished for directing osteoblastic/cementoblastic differentiation and neural differentiation from dental stem cells. To differentiate dental stem cells for use in tissue engineering and regenerative medicine, there needs to be efficient in vitro differentiation toward the osteoblastic/cementoblastic and neural lineage with well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source. This review focuses on the multilineage differentiation capacity, especially into osteoblastic/cementoblastic lineage and neural lineages, of dental stem cells such as dental pulp stem cells (DPSC), dental follicle stem cells (DFSC), periodontal ligament stem cells (PDLSC), and dental papilla stem cells (DPPSC). It also covers various experimental strategies that could be used to direct lineage-specific differentiation, and their potential applications in tissue engineering and regenerative medicine.

Download full-text


Available from: Ali Khademhosseini
  • Source
    • "Whether EMSCs can help fibrin to enhance the recovery of SCI has not been reported yet. Until now, EMSCs have been successfully isolated from the embryo and dental pulp, etc. [Kim et al., 2012]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibrin has been widely used in wound healing. However, its benefit for spinal cord injury (SCI) is limited. In this study, we investigated the impact of fibrin scaffolds containing ectomesenchymal stem cells (EMSCs) on histological and behavioral recovery after SCI and compared it with fibrin alone. To achieve this, EMSCs derived from adult rat nasal respiratory mucosa were cultured, characterized and transfected with green fluorescent protein adenovirus before transplantation. Then, Sprague-Dawley host rats were randomly assigned into four groups: the control group (laminectomy); the SCI group (laminectomy and transection of spinal cords); the fibrin group (fibrin was transplanted immediately after SCI), and the fibrin cell (FC) group (fibrin scaffolds containing EMSCs were transplanted after SCI). Three days after the operation, a TUNEL assay indicated less apoptotic cells in the FC group than in the fibrin group. Two weeks after SCI, fluorescence staining demonstrated not only the survival and migration of EMSCs into the lesion sites, but also a higher number of nerve fibers in the FC group than in the fibrin group. Histological examination including immunohistochemistry and transmission electron microscopy 12 weeks after the operation showed more nerve fibers and a thicker myelin sheath in the FC group compared to the fibrin group. Western blotting confirmed these morphological results. Consistent with the histological results, Basso, Beattie and Bresnahan locomotor scores of the FC group were higher than those of the fibrin group. These results suggest that fibrin scaffolds containing EMSCs can improve the behavioral and histological recovery after SCI better than fibrin alone.
    Full-text · Article · Jun 2013 · Cells Tissues Organs
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vitro vascularization is an upcoming strategy to solve the problem of insufficient blood supply after implantation. Although recent publications show promising results, these studies were generally performed with clinically irrelevant endothelial cell model systems. We tested the use of endothelial progenitor cells (EPC) obtained from umbilical cord blood and human mesenchymal stem cells (hMSC) from the bone marrow for their use in a prevascularized bone tissue engineering setting. MSC were differentiated toward endothelial cells. They formed capillary-like structures containing lumen, stained positive for CD31, attained the ability to take up acetylated low-density lipoproteins, and formed perfused vessels in vivo. However, in a three-dimensional coculture setting with undifferentiated hMSC, the cells stopped expressing CD31 and did not form prevascular structures. EPC from the cord blood were able to form prevascular structures in the same coculture setting, but only when the state of endothelial differentiation was mature. The amount of prevascular structures formed when using EPC was less than when human umbilical vein endothelial cells or human dermal microvascular endothelial cells were used. The degree of organization, however, was higher. We conclude that EPC can be used for complex tissue engineering applications, but the differentiation stage of these cells is important.
    No preview · Article · Feb 2009 · Tissue Engineering Part A
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dental pulp stem cells (DPSC), a cell type of mesenchymal origin showing high proliferation and plasticity, are an emerging source of adult stem cells offering interesting features in view of potential applications in regenerative medicine. These features prompted us to develop a new method to cryopreserve DPSC inside a whole tooth, thus avoiding the need to purify the cells before cryopreservation and reducing the initial costs and workload of tooth banking. In this study we cryopreserved 4 human deciduous whole teeth after digging micro-channels into the tooth with an Nd:YAG laser beam (laser piercing) to allow the cryopreservative to reach the dental pulp and preserve the cells at -80°C. Then, we isolated, expanded and characterized in vitro the stem cells after tooth thawing and mechanical fracture. In parallel, we characterized cells extracted from 2 teeth cryopreserved without laser piercing and from 4 non cryopreserved, non laser pierced, freshly fractured teeth. Our data demonstrate that DPSC isolated from laser pierced cryopreserved teeth show mesenchymal stem cells morphology, immunophenotype, viability and proliferation rate similar to those of cells isolated from fresh, non cryopreserved teeth, whereas significant loss of cell viability and proliferation rate was shown by cells isolated from teeth cryopreserved without laser piercing. These data support the use of this method for prospective whole tooth banking.
    Full-text · Article · Jul 2012 · Transfusion and Apheresis Science
Show more