Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0221, USA.
AMBIO A Journal of the Human Environment (Impact Factor: 2.29). 03/2012; 41(4):350-69. DOI: 10.1007/s13280-012-0258-5
Source: PubMed


Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO(2)) removal (CDR), which removes CO(2) from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research.

Download full-text


Available from: Joonas Merikanto
  • Source
    • "ere hurricanes traditionally develop in the Atlantic, raising the possibility of weakening them (Latham et al ., 2012b). Mostly, the three seeding regions covered less than 10% of the marine stratocumulus regions but some larger regions are considered in some of the articles. The influence of SRM on marine ecosystems has recently been addressed by Russell et al . (2012). In this article, we evaluate computationally the potential for MCB seeding in these same three regions to significantly reduce tropical SSTs in three major coral reef provinces—the Caribbean, French Polynesia, and the Great Barrier Reef—and thereby reduce the rates of coral bleaching."
    [Show abstract] [Hide abstract]
    ABSTRACT: Increases in coral bleaching events over the last few decades have been largely caused by rising sea surface temperatures (SST), and continued warming is expected to cause even greater increases through this century. We use a Global Climate Model to examine the potential of marine cloud brightening (MCB) to cool oceanic surface waters in three coral reef provinces. Our simulations indicate that under doubled CO2 conditions, the substantial increases in coral bleaching conditions from current values in three reef regions (Caribbean, French Polynesia, and the Great Barrier Reef) were eliminated when MCB was applied, which reduced the SSTs at these sites roughly to their original values.
    Full-text · Article · Oct 2013 · Atmospheric Science Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of ocean warming and acidification on individual species of marine ectothermic animals may be based on some common denominators, i.e. physiological responses that can be assumed to reflect unifying principles, common to all marine animal phyla. Identification of these principles requires studies, which reach beyond the species-specific response, and consider multiple stressors, for example temperature, CO2 or extreme hypoxia. Analyses of response and acclimation include functional traits of physiological performance on various levels of biological organisation, from changes in the transcriptome to patterns of acid-base regulation and whole animal thermal tolerance. Conclusions are substantiated by comparisons of species and phyla from temperate, Arctic and Antarctic ecosystems and also benefit from the interpretation of paleo-patterns based on the use of a unifying physiological concept, suitable to integrate relevant environmental factors into a more comprehensive picture. Studying the differential specialization of animals on climate regimes and their sensitivity to climate leads to improved understanding of ongoing and past ecosystem change and should then support more reliable projections of future scenarios. For example, accumulating CO2 causes disturbances in acid-base status. Resilience to ocean acidification may be reflected in the capacity to compensate for these disturbances or their secondary effects. Ion and pH regulation comprise thermally sensitive active and passive transfer processes across membranes. Specific responses of ion transporter genes and their products to temperature and CO2 were found in fish, crustaceans and bivalves. However, compensation may cause unfavourable shifts in energy budget and beyond that hamper cellular and mitochondrial metabolism, which are directly linked to the animal's aerobic performance window. In crabs, oysters and, possibly, fishes, a narrowing of the thermal window is caused by moderate increases in CO2 levels. Furthermore, a decrease in the efficiency of energy production may occur and affect growth and fitness as well as larval development. Different sensitivities of life history stages indicate physiologically sensitive bottlenecks during the life cycle of marine organisms. Available evidence suggests that the concept of oxygen and capacity limited thermal tolerance (OCLTT) provides access to the physiological mechanisms closely defining the sensitivities and responses of species to various stressors. It provides causality and quantifies the levels and changes of performance and resistance, and supports more realistic estimates of species and ecosystem sensitivities to environmental change. The emerging picture of differential sensitivities across animal phyla is in line with existing categorizations of sensitivities from palaeo-observations during the Permian-Triassic mass extinctions (A.H. Knoll et al., Earth and Planetary Science Letters 256, 295-313, 2007).
    No preview · Conference Paper · Dec 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO(2)) in the atmosphere. Ocean acidity (H(+) concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO(2); they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO(2), although with additional temperature-related effects on CO(2) and CaCO(3) solubility and terrestrial carbon sequestration.
    Full-text · Article · Sep 2012 · Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences
Show more