TIG3 interaction at the centrosome alters microtubule distribution and centrosome function

Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
Journal of Cell Science (Impact Factor: 5.43). 03/2012; 125(Pt 11):2604-14. DOI: 10.1242/jcs.096495
Source: PubMed


TIG3 is an important pro-differentiation regulator that is expressed in the suprabasal epidermis. We have shown that TIG3 activates selective keratinocyte differentiation-associated processes leading to cornified envelope formation. However, TIG3 also suppresses cell proliferation by an unknown mechanism. Our present studies suggest that cessation of growth is mediated through the impact of TIG3 on the centrosome and microtubules. The centrosome regulates microtubule function in interphase cells and microtubule spindle formation in mitotic cells. We show that TIG3 colocalizes with γ-tubulin and pericentrin at the centrosome. Localization of TIG3 at the centrosome alters microtubule nucleation and reduces anterograde microtubule growth, increases acetylation and detyrosination of α-tubulin, increases insoluble tubulin and drives the formation of a peripheral microtubule ring adjacent to the plasma membrane. In addition, TIG3 suppresses centrosome separation, but not duplication, and reduces cell proliferation. We propose that TIG3 regulates the formation of the peripheral microtubule ring observed in keratinocytes of differentiated epidermis and also has a role in the cessation of proliferation in these cells.

  • Source
    • "Consistent with a previous report (Fusco et al., 2012), our results show that HDAC6 insolubility is increased upon MG132 treatment; however, this was not affected by RanBPM either. This effect could also be linked to tubulin hyperacetylation, since increased acetylation of tubulin has been linked to its insolubility (Scharadin et al., 2012; Zuccotti et al., 2012). Thus, tubulin acetylation may be a prerequisite for transport of cargo to the aggresome but RanBPM does not appear to be involved in this regulation in conditions of proteasome impairment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In conditions of proteasomal impairment, the build-up of damaged or misfolded proteins activates a cellular response leading to the recruitment of damaged proteins into perinuclear aggregates called aggresomes. Aggresome formation involves the retrograde transport of cargo proteins along the microtubule network and is dependent on the histone deacetylase HDAC6. Here we show that ionizing radiation (IR) promotes Ran-Binding Protein M (RanBPM) relocalization into discrete perinuclear foci where it co-localizes with aggresome components ubiquitin, dynein and HDAC6, suggesting that the RanBPM perinuclear clusters correspond to aggresomes. RanBPM was also recruited to aggresomes following treatment with the proteasome inhibitor MG132 and the DNA-damaging agent etoposide. Strikingly, aggresome formation by HDAC6 was markedly impaired in RanBPM shRNA cells, but was restored by re-expression of RanBPM. RanBPM was found to interact with HDAC6 and to inhibit its deacetylase activity. This interaction was abrogated by a RanBPM deletion of its LisH/CTLH domain, which also prevented aggresome formation, suggesting that RanBPM promotes aggresome formation through an association with HDAC6. Our results suggest that RanBPM regulates HDAC6 activity and is a central regulator of aggresome formation.
    Full-text · Article · May 2014 · Biology Open
  • Source
    • "Similar inhibition of RAS signaling pathways has been observed in HRASLS2-expressing [7] or RIG1-expressing cervical and gastric cancer cells [13,19,20]. In keratinocytes, RIG1 has been shown to stimulate cellular differentiation that is mediated by activating type I tissue transglutaminase or regulating tubulin to drive the formation of the peripheral microtubule ring [15,17,18,22]. HREV107 family proteins also exhibit proapoptotic activities. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background H-rev107, also called HRASLS3 or PLA2G16, is a member of the HREV107 type II tumor suppressor gene family. Previous studies showed that H-rev107 exhibits phospholipase A/acyltransferase (PLA/AT) activity and downregulates H-RAS expression. However, the mode of action and the site of inhibition of H-RAS by H-rev107 are still unknown. Results Our results indicate that H-rev107 was co-precipitated with H-RAS and downregulated the levels of activated RAS (RAS-GTP) and ELK1-mediated transactivation in epidermal growth factor-stimulated and H-RAS-cotransfected HtTA cervical cancer cells. Furthermore, an acyl-biotin exchange assay demonstrated that H-rev107 reduced H-RAS palmitoylation. H-rev107 has been shown to be a PLA/AT that is involved in phospholipid metabolism. Treating cells with the PLA/AT inhibitor arachidonyl trifluoromethyl ketone (AACOCF3) or methyl arachidonyl fluorophosphate (MAFP) alleviated H-rev107-induced downregulation of the levels of acylated H-RAS. AACOCF3 and MAFP also increased activated RAS and ELK1-mediated transactivation in H-rev107-expressing HtTA cells following their treatment with epidermal growth factor. In contrast, treating cells with the acyl-protein thioesterase inhibitor palmostatin B enhanced H-rev107-mediated downregulation of acylated H-RAS in H-rev107-expressing cells. Palmostatin B had no effect on H-rev107-induced suppression of RAS-GTP levels or ELK1-mediated transactivation. These results suggest that H-rev107 decreases H-RAS activity through its PLA/AT activity to modulate H-RAS acylation. Conclusions We made the novel observation that H-rev107 decrease in the steady state levels of H-RAS palmitoylation through the phospholipase A/acyltransferase activity. H-rev107 is likely to suppress activation of the RAS signaling pathway by reducing the levels of palmitoylated H-RAS, which decreases the levels of GTP-bound H-RAS and also the activation of downstream molecules. Our study further suggests that the PLA/AT activity of H-rev107 may play an important role in H-rev107-mediated RAS suppression.
    Full-text · Article · May 2014 · Journal of Biomedical Science
  • Source
    • "In cervical cancer, RIG1 suppresses cell growth and induces cell death through caspase-dependent and -independent pathways [12,24]. In skin cancer, RIG1 induces cell apoptosis by promoting pericentrosomal organelle accumulation, which is associated with the decrease in cyclin D1, cyclin E, and Bcl-XL and the increase in p21 and Bax levels [22,46]. In addition, both RIG1 and H-REV107 have been suggested to exhibit phospholipase A(1/2) activity [3,5], which is involved in H-rev107-mediated HEK cell death by regulating peroxisomal lipid metabolism [47]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background H-rev107 is a member of the HREV107 type II tumor suppressor gene family which includes H-REV107, RIG1, and HRASLS. H-REV107 has been shown to express at high levels in differentiated tissues of post-meiotic testicular germ cells. Prostaglandin D2 (PGD2) is conjectured to induce SRY-related high-mobility group box 9 (SOX9) expression and subsequent Sertoli cell differentiation. To date, the function of H-rev107 in differentiated testicular cells has not been well defined. Results In the study, we found that H-rev107 was co-localized with prostaglandin D2 synthase (PTGDS) and enhanced the activity of PTGDS, resulting in increase of PGD2 production in testis cells. Furthermore, when H-rev107 was expressed in human NT2/D1 testicular cancer cells, cell migration and invasion were inhibited. Also, silencing of PTGDS would reduce H-rev107-mediated increase in PGD2, cAMP, and SOX9. Silencing of PTGDS or SOX9 also alleviated H-rev107-mediated suppression of cell migration and invasion. Conclusions These results revealed that H-rev107, through PTGDS, suppressed cell migration and invasion. Our data suggest that the PGD2-cAMP-SOX9 signal pathway might play an important role in H-rev107-mediated cancer cell invasion in testes.
    Full-text · Article · May 2013 · Journal of Biomedical Science
Show more