Probing the timescale of the exchange interaction in a ferromagnetic alloy

Department of Physics and JILA, University of Colorado, Boulder, CO 80309-0440, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 03/2012; 109(13):4792-7. DOI: 10.1073/pnas.1201371109
Source: PubMed


The underlying physics of all ferromagnetic behavior is the cooperative interaction between individual atomic magnetic moments that results in a macroscopic magnetization. In this work, we use extreme ultraviolet pulses from high-harmonic generation as an element-specific probe of ultrafast, optically driven, demagnetization in a ferromagnetic Fe-Ni alloy (permalloy). We show that for times shorter than the characteristic timescale for exchange coupling, the magnetization of Fe quenches more strongly than that of Ni. Then as the Fe moments start to randomize, the strong ferromagnetic exchange interaction induces further demagnetization in Ni, with a characteristic delay determined by the strength of the exchange interaction. We can further enhance this delay by lowering the exchange energy by diluting the permalloy with Cu. This measurement probes how the fundamental quantum mechanical exchange coupling between Fe and Ni in magnetic materials influences magnetic switching dynamics in ferromagnetic materials relevant to next-generation data storage technologies.

Download full-text


Available from: P. Grychtol
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo–electron volts, allowing, in principle, the generation of pulses as short as 2.5 attoseconds. The multiatmosphere gas pressures required for bright, phase-matched emission also support laser beam self-confinement, further enhancing the x-ray yield. Finally, the x-ray beam exhibits high spatial coherence, even though at high gas density the recolliding electrons responsible for HHG encounter other atoms during the emission process.
    Full-text · Article · Jun 2012 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Femtosecond laser excitation of a ferromagnetic material creates energetic spin-polarized electrons that have anomalous transport characteristics. We develop a semiclassical theory that is specifically dedicated to capture the transport of laser-excited nonequilibrium (NEQ) electrons. The randomly occurring multiple electronic collisions, which give rise to electron thermalization, are treated exactly and we include the generation of electron cascades due to inelastic electron-electron scatterings. The developed theory can, moreover, treat the presence of several different layers in the laser-irradiated material. The derived spin-dependent transport equation is solved numerically and it is shown that the hot NEQ electron spin transport occurs neither in the diffusive nor ballistic regime, it is superdiffusive. As the excited spin majority and minority electrons in typical transition-metal ferromagnets (e.g., Fe, Ni) have distinct, energy-dependent lifetimes, fast spin dynamics in the femtosecond (fs) regime is generated, causing effectively a spin current. As examples, we solve the resulting spin dynamics numerically for typical heterostructures, specifically, a ferromagnetic/nonmagnetic metallic layered junction (i.e., Fe/Al and Ni/Al) and a ferromagnetic/nonmagnetic insulator junction (Fe or Ni layer on a large band-gap insulator as, e.g., MgO). For the ferromagnetic/nonmagnetic metallic junction where the ferromagnetic layer is laser-excited, the computed spin dynamics shows that injection of a superdiffusive spin current in the nonmagnetic layer (Al) is achieved. The injected spin current consists of screened NEQ, mobile majority-spin electrons and is nearly 90% spin-polarized for Ni and about 65% for Fe. Concomitantly, a fast demagnetization of the ferromagnetic polarization in the femtosecond regime is driven. The analogy of the generated spin current to a superdiffusive spin Seebeck effect is surveyed.
    Full-text · Article · Jul 2012 · Physical review. B, Condensed matter
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrical control of spin polarization is very desirable in spintronics, since electric fields can be easily applied locally, in contrast to magnetic fields. Here, we propose a new concept of bipolar magnetic semiconductors (BMS) in which completely spin-polarized currents with reversible spin polarization can be created and controlled simply by applying a gate voltage. This is a result of the unique electronic structure of BMS, where the valence and conduction bands possess opposite spin polarization when approaching the Fermi level. BMS is thus expected to have potential for various applications. Our band structure and spin-polarized electronic transport calculations on semi-hydrogenated single-walled carbon nanotubes confirm the existence of BMS materials and demonstrate the electrical control of spin-polarization in them.
    Full-text · Article · Jul 2012 · Nanoscale
Show more