Spectroscopic Characterization of Coumarin-Stained Beads: Quantification of the Number of Fluorophores Per Particle with Solid-State F-19-NMR and Measurement of Absolute Fluorescence Quantum Yields

Structural Analysis Division, BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
Analytical Chemistry (Impact Factor: 5.64). 03/2012; 84(8):3654-61. DOI: 10.1021/ac3000682
Source: PubMed


The rational design of nano- and micrometer-sized particles with tailor-made optical properties for biological, diagnostic, and photonic applications requires tools to characterize the signal-relevant properties of these typically scattering bead suspensions. This includes methods for the preferably nondestructive quantification of the number of fluorophores per particle and the measurement of absolute fluorescence quantum yields and absorption coefficients of suspensions of fluorescent beads for material performance optimization and comparison. Here, as a first proof-of-concept, we present the first time determination of the number of dye molecules per bead using nondestructive quantitative ((19)F) NMR spectroscopy and 1000 nm-sized carboxylated polystyrene particles loaded with varying concentrations of the laser dye coumarin 153 containing a CF(3) group. Additionally, the signal-relevant optical properties of these dye-loaded particles were determined in aqueous suspension in comparison to the free dye in solvents of different polarity with a custom-built integrating sphere setup that enables spectrally resolved measurements of emission, transmission, and reflectance as well absolute fluorescence quantum yields. These measurements present an important step toward absolute brightness values and quantitative fluorescence analysis with particle systems that can be exploited, for example, for optical imaging techniques and different fluorescence assays as well as for the metrological traceability of fluorescence methods.

1 Follower
7 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The amount of grafted poly(acrylic acid) on poly(methyl methacrylate) micro- and nanoparticles was quantified by conductometry, (13)C solid-state NMR, fluorophore labeling, a supramolecular assay based on high-affinity binding of cucurbit[7]uril, and two colorimetric assays based on toluidine blue and nickel complexation by pyrocatechol violet. The methods were thoroughly validated and compared with respect to reproducibility, sensitivity, and ease of use. The results demonstrate that only a small but constant fraction of the surface functional groups is accessible to covalent surface derivatization independently of the total number of surface functional groups, and different contributing factors are discussed that determine the number of probe molecules which can be bound to the polymer surface. The fluorophore labeling approach was modified to exclude artifacts due to fluorescence quenching, but absolute quantum yield measurements still indicate a major uncertainty in routine fluorescence-based surface group quantifications, which is directly relevant for biochemical assays and medical diagnostics. Comparison with results from protein labeling with streptavidin suggests a porous network of poly(acrylic acid) chains on the particle surface, which allows diffusion of small molecules (cutoff between 1.6 and 6.5 nm) into the network.
    Full-text · Article · Apr 2012 · Journal of the American Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current optical probes including engineered nanoparticles (NPs) are constructed from near infrared (NIR)-emissive organic dyes with narrow absorption and emission bands and small Stokes shifts prone to aggregation-induced self-quenching. Here, we present the new asymmetric cyanine Itrybe with broad, almost environment-insensitive absorption and emission bands in the diagnostic window, offering a unique flexibility of the choice of excitation and detection wavelengths compared to common NIR dyes. This strongly emissive dye was spectroscopically studied in different solvents and encapsulated into differently sized (15, 25, 100 nm) amino-modified polystyrene NPs (PSNPs) via a one-step staining procedure. As proof-of-concept for its potential for pre-/clinical imaging applications, Itrybe-loaded NPs were surface-functionalized with polyethylene glycol (PEG) and the tumor-targeting antibody Herceptin and their binding specificity to the tumor-specific biomarker HER2 was systematically assessed. Itrybe-loaded NPs display strong fluorescence signals in vitro and in vivo and Herceptin-conjugated NPs bind specifically to HER2 as demonstrated in immunoassays as well as on tumor cells and sections from mouse tumor xenografts in vitro. This demonstrates that our design strategy exploiting broad band-absorbing and -emitting dyes yields versatile and bright NIR probes with a high potential for e.g. the sensitive detection and characterization of tumor development and progression.
    No preview · Article · Oct 2012 · Biomaterials
  • [Show abstract] [Hide abstract]
    ABSTRACT: We systematically assessed the loading behavior of core-multishell nanoparticles (CMS NPs) for the solvatochromic dyes Coumarin 153 and Nile Red and studied the influence of the guest and its concentration on CMS NP aggregation using steady state absorption and fluorescence spectroscopy and dynamic light scattering (DLS). These measurements revealed the strong fluorescence of dye-loaded CMS NPs and formation of nonemissive dye aggregates in the outer CMS layer at higher loading concentrations of Nile Red, whereas in the case of Coumarin 153, a new species with red-shifted absorption and blue-shifted emission appeared. Moreover, dye loading triggers an aggregation of CMS NPs which have a hydrodynamic radius of 8 nm, thereby leading to CMS aggregates with a radius of 100–120 nm. These results underline the need for systematic studies of the influence of the guest and its loading concentration on CMS NP size for cellular uptake and in vivo imaging studies and the rational design of CMS NPs with improved transport and targeting abilities.
    No preview · Article · Dec 2012 · Macromolecules
Show more