Following the Fate of One Insulin-Reactive CD4 T cell Conversion Into Teffs and Tregs in the Periphery Controls Diabetes in NOD Mice

Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
Diabetes (Impact Factor: 8.1). 03/2012; 61(5):1169-79. DOI: 10.2337/db11-0671
Source: PubMed


In diabetic patients and susceptible mice, insulin is a targeted autoantigen. Insulin B chain 9-23 (B:9-23) autoreactive CD4 T cells are key for initiating autoimmune diabetes in NOD mice; however, little is known regarding their origin and function. To this end, B:9-23-specific, BDC12-4.1 T-cell receptor (TCR) transgenic (Tg) mice were studied, of which, despite expressing a single TCR on the recombination activating gene-deficient background, only a fraction develops diabetes in an asynchronous manner. BDC12-4.1 CD4 T cells convert into effector (Teff) and Foxp3(+)-expressing adaptive regulatory T cells (aTregs) soon after leaving the thymus as a result of antigen recognition and homeostatic proliferation. The generation of aTreg causes the heterogeneous diabetes onset, since crossing onto the scurfy (Foxp3) mutation, BDC12-4.1 TCR Tg mice develop accelerated and fully penetrant diabetes. Similarly, adoptive transfer and bone marrow transplantation experiments showed differential diabetes kinetics based on Foxp3(+) aTreg's presence in the BDC12-4.1 donors. A single-specificity, insulin-reactive TCR escapes thymic deletion and simultaneously converts into aTreg and Teff, establishing an equilibrium that determines diabetes penetrance. These results are of particular importance for understanding disease pathogenesis. They suggest that once central tolerance is bypassed, autoreactive cells arriving in the periphery do not by default follow solely a pathogenic fate upon activation.

Download full-text


Available from: Georgia Fousteri
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foxp3(+) CD4(+) T helper cells called regulatory T (T reg) cells play a key role in controlling reactivity to self-antigens and onset of autoimmunity. T reg cells either arise in thymus and are called natural T reg (nT reg) cells or are generated in the periphery through induction of Foxp3 and are called inducible T reg (iT reg) cells. The relative contributions of iT reg cells and nT reg cells in peripheral tolerance remain unclear as a result of an inability to separate these two subsets of T reg cells. Using a combination of novel TCR transgenic mice with a defined self-antigen specificity and conventional mouse models, we demonstrate that a cell surface molecule, neuropilin-1 (Nrp-1), is expressed at high levels on nT reg cells and can be used to separate nT reg versus iT reg cells in certain physiological settings. In addition, iT reg cells generated through antigen delivery or converted under homeostatic conditions lack Nrp-1 expression. Nrp-1(lo) iT reg cells show similar suppressive activity to nT reg cells in controlling ongoing autoimmune responses under homeostatic conditions. In contrast, their activity might be compromised in certain lymphopenic settings. Collectively, our data show that Nrp-1 provides an excellent marker to distinguish distinct T reg subsets and will be useful in studying the role of nT reg versus iT reg cells in different disease settings.
    Full-text · Article · Sep 2012 · Journal of Experimental Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is widely accepted that Type 1 diabetes is a complex disease. Genetic predisposition and environmental factors favour the triggering of autoimmune responses against pancreatic β-cells, eventually leading to β-cell destruction. Over 40 susceptibility loci have been identified, many now mapped to known genes, largely supporting a dominant role for an immune-mediated pathogenesis. This role is also supported by the identification of several islet autoantigens and antigen-specific responses in patients with recent onset diabetes and subjects with pre-diabetes. Increasing evidence suggests certain viruses as a common environmental factor, together with diet and the gut microbiome. Inflammation and insulin resistance are emerging as additional cofactors, which might be interrelated with environmental factors. The heterogeneity of disease progression and clinical manifestations is likely a reflection of this multifactorial pathogenesis. So far, clinical trials have been mostly ineffective in delaying progression to overt diabetes in relatives at increased risk, or in reducing further loss of insulin secretion in patients with new-onset diabetes. This limited success may reflect, in part, our incomplete understanding of key pathogenic mechanisms, the lack of truly robust biomarkers of both disease activity and β-cell destruction, and the inability to assess the relative contributions of various pathogenic mechanisms at various time points during the course of the natural history of Type 1 diabetes. Emerging data and a re-evaluation of histopathological, immunological and metabolic findings suggest the hypothesis that unknown mechanisms of β-cell dysfunction may be present at diagnosis, and may contribute to the development of hyperglycaemia and clinical symptoms. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.
    No preview · Article · Nov 2012 · Diabetic Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: For more than a decade now, the regulatory T (Treg) cell has widely been considered as a critical subpopulation of T cells which can suppress effector T cell responses as well as suppressing the activity of other immune cells, such as mast cell, dendritic cells, and B cells. Treg cells have been broadly characterized as comprising of two main populations: thymus-derived natural Treg (nTreg) cells, and peripherally generated induced Treg (iTreg) cells. Both subsets have similar phenotypic characteristics and comparable suppressive function against T cell-mediated immune response and diseases. However, both Foxp3 positive Treg subsets exhibit some specific differences such as different mRNA transcripts and protein expression, epigenetic modification, and stability. These subtle differences reinforce the notion that they represent unique and distinct subsets. Accurately distinguishing iTregs from nTregs will help to clarify the biological features and contributions of each Treg subsets in peripheral tolerance, autoimmunity and tumor immunity. One difficult problem is that it has not been possible to distinguish iTregs from nTregs using surface markers until two recent articles were published to address this possibility. This review will focus on very recent advances in using molecular markers to differentiate these Treg subsets.
    No preview · Article · Jan 2013 · International journal of clinical and experimental pathology
Show more