Cell proliferation and oxidative stress pathways are modified in fibroblasts from Sturge-Weber syndrome patients

Departments of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, MD, USA.
Archives for Dermatological Research (Impact Factor: 1.9). 03/2012; 304(3):229-35. DOI: 10.1007/s00403-012-1210-z
Source: PubMed


Sturge-Weber syndrome (SWS) is defined by vascular malformations of the face, eye and brain and an underlying somatic mutation has been hypothesized. We employed isobaric tags for relative and absolute quantification (iTRAQ-8plex)-based liquid chromatography interfaced with tandem mass spectrometry (LC-MS/MS) approach to identify differentially expressed proteins between port-wine-derived and normal skin-derived fibroblasts of four individuals with SWS. Proteins were identified that were significantly up- or down-regulated (i.e., ratios >1.2 or <0.8) in two or three pairs of samples (n = 31/972 quantified proteins) and their associated p values reported. Ingenuity pathway analysis (IPA) tool showed that the up-regulated proteins were associated with pathways that enhance cell proliferation; down-regulated proteins were associated with suppression of cell proliferation. The significant toxicologic list pathway in all four observations was oxidative stress mediated by Nrf2. This proteomics study highlights oxidative stress also consistent with a possible mutation in the RASA1 gene or pathway in SWS.

Download full-text


Available from: Shilpa D. Kadam, Nov 06, 2015
  • Source
    • "Consistent with these mouse studies, mutations in the RASA1 gene have been linked with familial capillary venous malformation syndromes which can present with a wide range of phenotypes, most commonly that known as a “port wine stain” [11], [12], [13], [14], [15]. Recent proteomic analysis of these skin lesions showed consistent decreased expression of RasGAP compared to surrounding normal tissue [16]. This together suggests that RASA1 plays a crucial role in angiogenesis and vascular development. "
    [Show abstract] [Hide abstract]
    ABSTRACT: KRAS is mutated in ∼40% of colorectal cancer (CRC), and there are limited effective treatments for advanced KRAS mutant CRC. Therefore, it is crucial that downstream mediators of oncogenic KRAS continue to be studied. We identified p190RhoGAP as being phosphorylated in the DLD1 CRC cell line, which expresses a heterozygous KRAS G13D allele, and not in DKO4 in which the mutant allele has been deleted by somatic recombination. We found that a ubiquitous binding partner of p190RhoGAP, p120RasGAP (RasGAP), is expressed in much lower levels in DKO4 cells compared to DLD1, and this expression is regulated by KRAS. Rescue of RasGAP expression in DKO4 rescued Rho pathway activation and partially rescued tumorigenicity in DKO4 cells, indicating that the combination of mutant KRAS and RasGAP expression is crucial to these phenotypes. We conclude that RasGAP is an important effector of mutant KRAS in CRC.
    Full-text · Article · Jan 2014 · PLoS ONE

  • No preview · Article · Sep 2012 · Lymphatic Research and Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neither the pathogenesis of port wine stain (PWS) birthmarks nor tissue effects of pulsed dye laser (PDL) treatment of these lesions is fully understood. There are few published reports utilizing gene expression analysis in human PWS skin. We aim to compare gene expression in PWS before and after PDL, using DNA microarrays that represent most, if not all, human genes to obtain comprehensive molecular profiles of PWS lesions and PDL-associated tissue effects. Five human subjects had PDL treatment of their PWS. One week later, three biopsies were taken from each subject: normal skin (N); untreated PWS (PWS); PWS post-PDL (PWS + PDL). Samples included two lower extremity lesions, two facial lesions, and one facial nodule. High-quality total RNA isolated from skin biopsies was processed and applied to Affymetrix Human gene 1.0ST microarrays for gene expression analysis. We performed a 16 pair-wise comparison identifying either up- or down-regulated genes between N versus PWS and PWS versus PWS + PDL for four of the donor samples. The PWS nodule (nPWS) was analyzed separately. There was significant variation in gene expression profiles between individuals. By doing pair-wise comparisons between samples taken from the same donor, we were able to identify genes that may participate in the formation of PWS lesions and PDL tissue effects. Genes associated with immune, epidermal, and lipid metabolism were up-regulated in PWS skin. The nPWS exhibited more profound differences in gene expression than the rest of the samples, with significant differential expression of genes associated with angiogenesis, tumorigenesis, and inflammation. In summary, gene expression profiles from N, PWS, and PWS + PDL demonstrated significant variation within samples from the same donor and between donors. By doing pair-wise comparisons between samples taken from the same donor and comparing these results between donors, we were able to identify genes that may participate in formation of PWS and PDL effects. Our preliminary results indicate changes in gene expression of angiogenesis-related genes, suggesting that dysregulation of angiogenic signals and/or components may contribute to PWS pathology. Lasers Surg. Med. 45: 67-75, 2013. © 2012 Wiley Periodicals, Inc.
    Full-text · Article · Feb 2013 · Lasers in Surgery and Medicine