Inferring the Phylogeny of Bovidae Using Mitochondrial DNA Sequences: Resolving Power of Individual Genes Relative to Complete Genomes

Molecular Fingerprinting and Biodiversity Unit, Prince Sultan Research Chair for Environment and Wildlife, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Evolutionary bioinformatics online (Impact Factor: 1.45). 02/2012; 8(8):139-50. DOI: 10.4137/EBO.S8897
Source: PubMed


Molecular techniques that assess biodiversity through the analysis of a small segment of mitochondrial genome have been getting wide attention for inferring the mammalian diversity. Due to their highly conserved nature, specific mitochondrial genes offer a promising tool for phylogenetic analysis. However, there is no established criteria for selecting the typical mitochondrial DNA (mtDNA) segments to achieve a greater resolving power. We therefore chose the family Bovidae as a model and compared the tree-topologies resulting from the commonly used and phylogenetically-informative genes including 16S rRNA, 12S rRNA, COI, Cyt b and D-loop with respect to complete mitochondrial genome. The tree topologies from the whole mitochondrial genome of 12 species were not identical albeit similar with those resulting from the five individual genes mentioned above. High bootstrap values were observed for mtDNA compared with that of any single gene. The average pair-wise sequence divergence using different genetic modes was found to be: D-loop (0.229) > Cyt b (0.159) > COI or complete mtDNA (0.143) > 12S rRNA (0.094) > 16S rRNA (0.091). The tree resulting from complete mtDNA clearly separated the 12 taxa of Bovidae into 3 major clusters, one cluster each for subfamily Cervinae and Bovinae and the third cluster comprised the distinctive clades of Caprinae and Antilopinae. However, jumping clades of Antilopinae were observed while using the individual genes. This study showed that Bison bison and Bos Taurus have very close phylogenetic relationship compared to Bubalus bubalis (Bovinae), irrespective of the method used. Our findings suggest that complete mtDNA genome provides most reliable understanding of complex phylogenetic relationships while the reliability of individual gene trees should be verified with high bootstrap support.

Download full-text


Available from: Haseeb Khan
  • Source
    • "However, these markers have no universal primers for broad animal species. Despite the great potential of genetics to assist in the identification of ADDs and the phylogeny of some animal clades, such as the Bovidae, Cervidae, and Moschidae293031, little consensus exists regarding which gene region is the most suitable for studying a wide range of animal species. Recently, the mitochondrial cytochrome c oxidase I (COI) gene has attracted global attention as a DNA barcode for animals because the consortium for the barcode of life (CBOL) uses universal primers to amplify a region of the COI gene approximately 650 bp in length to identify broad animal taxonomy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of threatened animals as a source of traditional medicines is accelerating the extinction of such species and imposes great challenges to animal conservation. In this study, we propose a feasible strategy for the conservation of threatened medicinal animals that combines trade monitoring and the search for substitutes. First, DNA barcoding provides a powerful technique for monitoring the trade of animal species, which helps in restricting the excessive use and illegal trade of such species. Second, pharmacological tests have been adopted to evaluate the biological equivalence of threatened and domestic animals; based on such testing, potential substitutes are recommended. Based on a review of threatened animal species and their substitutes, we find that the search for substitutes deserves special attention; however, this work is far from complete. These results may be of great value for the conservation of threatened animals and maintaining the heritage of traditional medicine.
    Full-text · Article · Oct 2013 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Populations of Houbara Bustards have dramatically declined in recent years. Captive breeding and reintroduction programs have had limited success in reviving population numbers and thus new technological solutions involving molecular methods are essential for the long term survival of this species. In this study, we sequenced the 694 bp segment of COI gene of the four specimens of Asian Houbara Bustard (Chlamydotis undulata macqueenii). We also compared these sequences with earlier published barcodes of 11 individuals comprising different families of the orders Gruiformes, Ciconiiformes, Podicipediformes and Crocodylia (out group). The pair-wise sequence comparison showed a total of 254 variable sites across all the 15 sequences from different taxa. Three of the four specimens of Houbara Bustard had an identical sequence of COI gene and one individual showed a single nucleotide difference (G > A transition at position 83). Within the bustard family (Otididae), comparison among the three species (Asian Houbara Bustard, Great Bustard (Otis tarda) and the Little Bustard (Tetrax tetrax)), representing three different genera, showed 116 variable sites. For another family (Rallidae), the intra-family variable sites among the individuals of four different genera were found to be 146. The COI genetic distances among the 15 individuals varied from 0.000 to 0.431. Phylogenetic analysis using 619 bp nucleotide segment of COI clearly discriminated all the species representing different genera, families and orders. All the four specimens of Houbara Bustard formed a single clade and are clearly separated from other two individuals of the same family (Otis tarda and Tetrax tetrax). The nucleotide sequence of partial segment of COI gene effectively discriminated the closely related species. This is the first study reporting the barcodes of Houbara Bustard and would be helpful in future molecular studies, particularly for the conservation of this threatened bird in Saudi Arabia.
    Full-text · Article · Dec 2012 · International Journal of Molecular Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal horns (AHs) have been applied to traditional medicine for more than thousands of years, of which clinical effects have been confirmed by the history. But now parts of AHs have been listed in the items of wildlife conservation, which limits the use for traditional medicine. The contradiction between the development of traditional medicine and the protection of wild resources has already become the common concern of zoophilists, traditional medical professionals, economists, sociologists. We believe that to strengthen the identification for threatened animals, to prevent the circulation of them, and to seek fertile animals of corresponding bioactivities as substitutes are effective strategies to solve this problem.
    Preview · Article · Feb 2013 · PLoS ONE
Show more