On the Mechanism of αC Polymer Formation in Fibrin

Center for Vascular and Inflammatory Diseases and the Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States.
Biochemistry (Impact Factor: 3.02). 03/2012; 51(12):2526-38. DOI: 10.1021/bi2017848
Source: PubMed


Our previous studies revealed that the fibrinogen αC-domains undergo conformational changes and adopt a physiologically active conformation upon their self-association into αC polymers in fibrin. In the present study, we analyzed the mechanism of αC polymer formation and tested our hypothesis that self-association of the αC-domains occurs through the interaction between their N-terminal subdomains and may include β-hairpin swapping. Our binding experiments performed by size-exclusion chromatography and optical trap-based force spectroscopy revealed that the αC-domains self-associate exclusively through their N-terminal subdomains, while their C-terminal subdomains were found to interact with the αC-connectors that tether the αC-domains to the bulk of the molecule. This interaction should reinforce the structure of αC polymers and provide the proper orientation of their reactive residues for efficient cross-linking by factor XIIIa. Molecular modeling of self-association of the N-terminal subdomains confirmed that the hypothesized β-hairpin swapping does not impose any steric hindrance. To "freeze" the conformation of the N-terminal subdomain and prevent the hypothesized β-hairpin swapping, we introduced by site-directed mutagenesis an extra disulfide bond between two β-hairpins of the bovine Aα406-483 fragment corresponding to this subdomain. The experiments performed by circular dichroism revealed that Aα406-483 mutant containing Lys429Cys/Thr463Cys mutations preserved its β-sheet structure. However, in contrast to wild-type Aα406-483, this mutant had lower tendency for oligomerization, and its structure was not stabilized upon oligomerization, in agreement with the above hypothesis. On the basis of the results obtained and our previous findings, we propose a model of fibrin αC polymer structure and molecular mechanism of assembly.

Download full-text


Available from: Rustem I Litvinov
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid laboratory assessment of heparin-induced thrombocytopenia (HIT) is important for disease recognition and management. The utility of contemporary immunoassays to detect antiplatelet factor 4 (PF4)/heparin antibodies is hindered by detection of antibodies unassociated with disease. To begin to distinguish properties of pathogenic anti-PF4/heparin antibodies, we compared isotype-matched monoclonal antibodies that bind to different epitopes: KKO causes thrombocytopenia in an in vivo model of HIT, whereas RTO does not. KKO binding to PF4 and heparin is specifically inhibited by human HIT antibodies that activate platelets, whereas inhibition of RTO binding is not differentially affected. Heparin increased the avidity of KKO binding to PF4 without affecting RTO, but it did not increase total binding or binding to nontetrameric PF4(K50E). Single-molecule forced unbinding demonstrated KKO was 8-fold more reactive toward PF4 tetramers and formed stronger complexes than RTO, but not to PF4(K50E) dimers. KKO, but not RTO, promoted oligomerization of PF4 but not PF4(K50E). This study reveals differences in the properties of anti-PF4 antibodies that cause thrombocytopenia not revealed by ELISA that correlate with oligomerization of PF4 and sustained high-avidity interactions that may simulate transient antibody-antigen interactions in vivo. These differences suggest the potential importance of epitope specificity in the pathogenesis of HIT.
    Full-text · Article · May 2012 · Blood
  • [Show abstract] [Hide abstract]
    ABSTRACT: A fibrin clot is stabilised through the formation of factor XIIIa-catalysed intermolecular ε-lysyl-γ-glutamyl covalent cross-links between α chains to form α polymers and between γ chains to form γ dimers. In a previous study we characterised fibrinogen Seoul II, a heterozygous dysfibrinogen in which a cross-linking acceptor site in Aα chain, Gln328, was replaced with Pro (AαQ328P). Following on the previous study, we investigated whether the alteration of Gln residues Aα328 and Aα366 affects fibrin polymerisation and α chain cross-linking. We have expressed three recombinant fibrinogens: AαQ328P, AαQ366P, and AαQ328,366P in Chinese hamster ovary cells, purified these fibrinogens from the culture media and performed biochemical tests to see how the introduced changes affect fibrin polymerisation and α chain cross-linking. Thrombin-catalysed fibrin polymerisation of all variants was impaired with the double mutation being the most impaired. In contrast, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis showed α polymer formation with all three engineered proteins. This study demonstrates that AαQ328 and AαQ366 are important for normal fibrin clot formation and in the absence of residues AαQ328 and AαQ366, other Gln residues in the α chain can support FXIIIa-catalysed fibrin cross-linking.
    No preview · Article · Dec 2012 · Thrombosis and Haemostasis
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Male Anopheles mosquitoes coagulate their seminal fluids via cross-linking of a substrate, called Plugin, by the seminal transglutaminase AgTG3. Formation of the “mating plug” by cross-linking Plugin is necessary for efficient sperm storage by females. AgTG3 has a similar degree of sequence identity (∼30%) to both human Factor XIII (FXIII) and tissue transglutaminase 2 (hTG2). Here we report the solution structure and in vitro activity for the cross-linking reaction of AgTG3 and Plugin. AgTG3 is a dimer in solution and exhibits Ca2+-dependent nonproteolytic activation analogous to cytoplasmic FXIII. The C-terminal domain of Plugin is predominantly α-helical with extended tertiary structure and oligomerizes in solution. The specific activity of AgTG3 was measured as 4.25 × 10−2 units mg−1. AgTG3 is less active than hTG2 assayed using the general substrate TVQQEL but has 8–10× higher relative activity when Plugin is the substrate. Mass spectrometric analysis of cross-linked Plugin detects specific peptides including a predicted consensus motif for cross-linking by AgTG3. These results support the development of AgTG3 inhibitors as specific and effective chemosterilants for A. gambiae.
    Full-text · Article · Jan 2013 · Journal of Biological Chemistry
Show more