The AKTion in non-canonical insulin signaling

Howard Hughes Medical Institute, Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.
Nature medicine (Impact Factor: 27.36). 03/2012; 18(3):351-3. DOI: 10.1038/nm.2694
Source: PubMed


The kinase AKT has been regarded as an obligate intermediate in the insulin signaling pathway that suppresses glucose production by inhibiting the transcription factor forkhead box O1 (FoxO1) after meals. A new study shows that, without AKT-FoxO1 signaling, insulin still contributes to postprandial responses, revealing an AKT-independent pathway for insulin action that might be exploited to treat metabolic disease (pages 388-395).

4 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The incidence and prevalence of diabetes mellitus are each increasing rapidly in societies around the globe. The majority of patients with diabetes succumb ultimately to heart disease, much of which stems from atherosclerotic disease and hypertension. However, the diabetic milieu is itself intrinsically noxious to the heart, and cardiomyopathy can develop independent of elevated blood pressure or coronary artery disease. This process, termed diabetic cardiomyopathy, is characterized by significant changes in the physiology, structure, and mechanical function of the heart. Presently, therapy for patients with diabetes focuses largely on glucose control, and attention to the heart commences with the onset of symptoms. When the latter develops, standard therapy for heart failure is applied. However, recent studies highlight that specific elements of the pathogenesis of diabetic heart disease are unique, raising the prospect of diabetes-specific therapeutic intervention. Here, we review recently unveiled insights into the pathogenesis of diabetic cardiomyopathy and associated metabolic remodeling with an eye toward identifying novel targets with therapeutic potential.
    Full-text · Article · Oct 2012 · Life sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: The insulin receptor substrates (IRS) are adapter proteins mediating insulin's and IGF1's intracellular effects. Recent data suggest that IRS2 in the central nervous system (CNS) is involved in regulating fuel metabolism as well as memory formation. The present study aims to specifically define the role of chronically increased IRS2-mediated signal transduction in the CNS. We generated transgenic mice overexpressing IRS2 specifically in neurons (nIRS2 tg) and analyzed these in respect to energy metabolism, learning, and memory. Western blot (WB) analysis of nIRS2 tg brain lysates revealed increased IRS2 downstream signaling. Histopathological investigation of nIRS2 tg mice proved unaltered brain development and structure. Interestingly, nIRS2 tg mice showed decreased voluntary locomotoric activity during dark phase accompanied with decreased energy expenditure (EE) leading to increased fat mass. Accordingly, nIRS2 tg mice develop insulin resistance and glucose intolerance during aging. Exploratory behavior, motor function as well as food and water intake were unchanged in nIRS2 tg mice. Surprisingly, increased IRS2-mediated signals did not change spatial working memory in the T-maze task. Since FoxO1 is a key mediator of IRS2-transmitted signals, we additionally generated mice expressing a dominant negative mutant of FoxO1 (FoxO1DN) specifically in neurons. This mutant mimics the effect of increased IRS2 signaling on FoxO-mediated transcription. Interestingly, the phenotype observed in nIRS2 tg mice was not present in FoxO1DN mice. Therefore, increased neuronal IRS2 signaling causes decreased locomotoric activity in the presence of unaltered exploratory behavior and motor coordination that might lead to increased fat mass, insulin resistance, and glucose intolerance during aging independent of FoxO1-mediated transcription.
    No preview · Article · Nov 2012 · Age
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperglycemia is a result of impaired insulin action on glucose production and disposal, and a major target of antidiabetic therapies. The study of insulin-independent regulatory mechanisms of glucose metabolism may identify new strategies to lower blood sugar levels. Here we demonstrate an unexpected metabolic function for IL-13 in the control of hepatic glucose production. IL-13 is a Th2 cytokine known to mediate macrophage alternative activation. Genetic ablation of Il-13 in mice (Il-13-/-) resulted in hyperglycemia, which progressed to hepatic insulin resistance and systemic metabolic dysfunction. In Il-13-/- mice, upregulation of enzymes involved in hepatic gluconeogenesis was a primary event leading to dysregulated glucose metabolism. IL-13 inhibited transcription of gluconeogenic genes by acting directly on hepatocytes through Stat3, a noncanonical downstream effector. Consequently, the ability of IL-13 to suppress glucose production was abolished in liver cells lacking Stat3 or IL-13 receptor α1 (Il-13rα1), which suggests that the IL-13Rα1/Stat3 axis directs IL-13 signaling toward metabolic responses. These findings extend the implication of a Th1/Th2 paradigm in metabolic homeostasis beyond inflammation to direct control of glucose metabolism and suggest that the IL-13/Stat3 pathway may serve as a therapeutic target for glycemic control in insulin resistance and type 2 diabetes.
    Full-text · Article · Dec 2012 · The Journal of clinical investigation
Show more