Conference Paper

Adaptive Design Optimization in Experiments with People

Conference: Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada.
Source: DBLP


In cognitive science, empirical data collected from participants are the arbiters in model selection. Model discrimination thus depends on designing maximally informative experiments. It has been shown that adaptive design optimization (ADO) allows one to discriminate models as efficiently as possible in simulation experiments. In this paper we use ADO in a series of experiments with people to discriminate the Power, Exponential, and Hyperbolic models of memory retention, which has been a long-standing problem in cognitive science, providing an ideal setting in which to test the application of ADO for addressing questions about human cognition. Using an optimality criterion based on mutual information, ADO is able to find designs that are maximally likely to increase our certainty about the true model upon observation of the experiment outcomes. Results demonstrate the usefulness of ADO and also reveal some challenges in its implementation.

Download full-text


Available from: Daniel R Cavagnaro, Jul 29, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t A commonly voiced concern with the Bayes factor is that, unlike many other Bayesian and non-Bayesian quantitative measures of model evaluation, it is highly sensitive to the parameter prior. This paper argues that, when dealing with psychological models that are quantitatively instantiated theories, being sensitive to the prior is an attractive feature of a model evaluation measure. This assertion follows from the observation that in psychological models parameters are not completely unknown, but correspond to psychological variables about which theory often exists. This theory can be formally captured in the prior range and prior distribution of the parameters, indicating which parameter values are allowed, likely, unlikely and forbidden. Because the prior is a vehicle for expressing psychological theory, it should, like the model equation, be considered as an integral part of the model. It is argued that the combined practice of building models using informative priors, and evaluating models using prior sensitive measures advances knowledge.
    Full-text · Article · Dec 2010 · Journal of Mathematical Psychology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its own performance.
    Full-text · Article · Jul 2012 · New Journal of Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experimentation is ubiquitous in the field of psychology and fundamental to the advancement of its science, and one of the biggest challenges for researchers is designing experiments that can conclusively discriminate the theoretical hypotheses or models under investigation. The recognition of this challenge has led to the development of sophisticated statistical methods that aid in the design of experiments and that are within the reach of everyday experimental scientists. This tutorial paper introduces the reader to an implementable experimentation methodology, dubbed Adaptive Design Optimization, that can help scientists to conduct "smart" experiments that are maximally informative and highly efficient, which in turn should accelerate scientific discovery in psychology and beyond.
    No preview · Article · Jun 2013 · Journal of Mathematical Psychology
Show more