Conference Paper

A Combinatorial Characterization of ResolutionWidth.

Univ. Politecnica de Catalunya, Barcelona, Spain
Conference: 18th Annual IEEE Conference on Computational Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark
Source: DBLP

ABSTRACT

Abstract We provide a characterization of the resolution width introduced in the context of propositional proof complexity in terms of the existential pebble game introduced in the context of finite model theory. The characterization is tight and purely combinatorial. Our first application of this result is a surprising proof that the minimum,space of refuting a 3-CNF formula is always bounded,from below by the minimum width of refuting it (minus 3). This solves a well-known open problem. The second application is the unification of several width lower bound arguments, and a new width lower bound for the dense linear order principle. Since we also show that this principle has resolution refutations of polynomial size, this provides yet another example showing that the relationship between size and width cannot be made subpolynomial.

Download full-text

Full-text

Available from: Víctor Dalmau, Dec 11, 2014
  • Source
    • "The notion of k-consistency has proven to be very robust and, besides being one of the central concepts in theory of constraint-satisfaction problems, has also emerged independently in areas as diverse as finite model theory [18], graph theory [16], and proof complexity [1]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The k-consistency algorithm for constraint-satisfaction problems proceeds, roughly, by finding all partial solutions on at most k variables and iteratively deleting those that cannot be extended to a partial solution by one more variable. It is known that if the core of the structure encoding the scopes of the constraints has treewidth at most k, then the k-consistency algorithm is always correct. We prove the exact converse to this: if the core of the structure encoding the scopes of the constraints does not have treewidth at most k, then the k-consistency algorithm is not always correct. This characterizes the exact power of the k-consistency algorithm in structural terms.
    Full-text · Chapter · Aug 2007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This project approaches the study, theoretical development, implementation, and em- pirical validation of formal concepts and the criteria for its use in the construction of predictive and descriptive models for symbolic sequences. In particular we will study the following model types: compression mechanisms (flnite- state compressors and Lempel-Ziv algorithms), generalizations of graphs (probabilistic extensions, decision trees, integration of decision trees with Markov hidden models), gram- matical models (such as categorial grammars), time series, study of subsequences (discov- ery of episodes, frequent sets and association rules; learning of patterns of behaviour). The empirical validation of models will be done through great amounts of real data: university students, oncological data from the Hospital Cl¶‡nico Universitario, biological sequences, climatology data.
    Full-text · Article ·
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We define a collection of Prover-Delayer games to characterise some subsystems of propositional resolution. We give some natural criteria for the games which guarantee lower bounds on the resolution width. By an adaptation of the size-width tradeoff for resolution of [10] this result also gives lower bounds on proof size. We also use games to give upper bounds on proof size, and in particular describe a good strategy for the Prover in a certain game which yields a short refutation of the Linear Ordering principle. Using previous ideas we devise a new algorithm to automatically generate resolution refutations. On bounded width formulas, our algorithm is as least as good as the width based algorithm of [10]. Moreover, it finds short proofs of the Linear Ordering principle when the variables respect a given order. Finally we approach the question of proving that a formula F is hard to refute if and only if is “almost” satisfiable. We prove results in both directions when “almost satisfiable” means that it is hard to distuinguish F from a satisfiable formula using limited pebbling games.
    Preview · Article · Jan 2004 · Lecture Notes in Computer Science
Show more