Data-driven models to forecast PM10 concentration

Conference Paper · August 2007with8 Reads
DOI: 10.1109/IJCNN.2007.4370953 · Source: DBLP
Conference: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2007, Celebrating 20 years of neural networks, Orlando, Florida, USA, August 12-17, 2007
Abstract
The research activity described in this paper concerns the study of the phenomena responsible for the urban and suburban air pollution. The analysis carries on the work already developed by the NeMeFo (neural meteo forecasting) research project for meteorological data short-term forecasting. The study analyzed the air pollution principal causes and identified the best subset of features (meteorological data and air pollutants concentrations) for each air pollutant in order to predict its medium-term concentration (in particular for the particulate matter with an aerodynamic diameter of up to 10 mum called PM10). The selection of the best subset of features was implemented by means of a backward selection algorithm which is based on the information theory notion of relative entropy. The final aim of the research is the implementation of a prognostic tool able to reduce the risk for the air pollutants concentrations to be above the alarm thresholds fixed by the law. The implementation of this tool will be carried out using data-driven models based on some of the most wide-spread statistical data-learning techniques (artificial neural networks and support vector machines).
  • [Show abstract] [Hide abstract] ABSTRACT: Feature selection is an important method of data preprocessing in data mining. In this paper, a novel feature selection method based on multi-fractal dimension and harmony search algorithm is proposed. Multi-fractal dimension is adopted as the evaluation criterion of feature subset, which can determine the number of selected features. An improved harmony search algorithm is used as the search strategy to improve the efficiency of feature selection. The performance of the proposed method is compared with that of other feature selection algorithms on UCI data-sets. Besides, the proposed method is also used to predict the daily average concentration of PM2.5 in China. Experimental results show that the proposed method can obtain competitive results in terms of both prediction accuracy and the number of selected features.
    Article · Sep 2015
  • undefined · undefined
  • undefined · undefined

  • undefined · undefined
  • undefined · undefined
  • undefined · undefined