In this paper, a new approach to automatically segment noisy respiratory sound signals is proposed. Segmentation is formulated as an optimization problem and the boundaries of the signal segments are detected using a genetic algorithm (GA). As the estimated number of segments present in a segmenting signal is initially obtained, a multi-population GA is employed to determine the locations of segment boundaries. The segmentation results are found through the generations of GA by introducing a new evaluation function, which is based on the sample entropy and a heterogeneity measure. Illustrative results for respiratory sound signals contaminated by loud heartbeats and other high level noises show that the proposed genetic segmentation method is quite accurate and threshold independent to find the noisy respiratory segments as well as the pause segments under different noisy conditions.