Conference PaperPDF Available

Interface: electronic chamber ensemble.

Authors:

Abstract

This paper presents the interface developments and music of the duo "interface," formed by Curtis Bahn and Dan Trueman. We describe gestural instrument design, interactive performance interfaces for improvisational music, spherical speakers (multi-channel, outward-radiating geodesic speaker arrays) and Sensor-Speaker-Arrays (SenSAs: combinations of various sensor devices with spherical speaker arrays). We discuss the concept, design and construction of these systems, and, give examples from several new published CDs of work by Bahn and Trueman.
interface
electronic chamber ensemble
&XUWLV%DKQ
,QWHJUDWHG(OHFWURQLF$UWVL($56WXGLRV
'&&5HQVVHDODHU3RO\WHFKQLF,QVWLWXWH
WK 6WUHHW7UR\1<

FUE#USLHGX
'DQ7UXHPDQ
&RPSXWHU0XVLF&HQWHU
&ROXPELD8QLYHUVLW\
ZWK6WUHHW1HZ<RUN1<

GDQ#PXVLFFROXPELDHGX
ABSTRACT
7KLV SDSHU SUHVHQWV WKH LQWHUIDFH GHYHORSPHQWV DQG PXVLF
RI WKH GXR ³LQWHUIDFH´ IRUPHG E\ &XUWLV %DKQ DQG 'DQ
7UXHPDQ :H GHVFULEH JHVWXUDO LQVWUXPHQW GHVLJQ
LQWHUDFWLYH SHUIRUPDQFH LQWHUIDFHV IRU LPSURYLVDWLRQDO
PXVLFVSKHULFDOVSHDNHUVPXOWLFKDQQHORXWZDUGUDGLDWLQJ
JHRGHVLF VSHDNHU DUUD\V DQG 6HQVRU6SHDNHU$UUD\V
6HQ6$V FRPELQDWLRQV RI YDULRXV VHQVRU GHYLFHV ZLWK
VSKHULFDO VSHDNHU DUUD\V :H GLVFXVV WKH FRQFHSW GHVLJQ
DQGFRQVWUXFWLRQRIWKHVHV\VWHPVDQGJLYHH[DPSOHVIURP
VHYHUDOQHZSXEOLVKHG&'VRIZRUNE\%DKQDQG7UXHPDQ
Keywords
,QWHUDFWLYH 0XVLF 3HUIRUPDQFH *HVWXUDO ,QWHUIDFH 6RQLF
'LVSOD\6HQVRU6SHDNHU$UUD\6HQ6$
INTRODUCTION
³LQWHUIDFH´ LV DQ LPSURYLVDWRU\ HOHFWURQLF PXVLF
GXR IRUPHG LQ  E\ FRPSRVHUV &XUWLV %DKQ DQG 'DQ
7UXHPDQ IRFXVLQJ RQ LVVXHV RI VSRQWDQHRXV PXVLFDO
LQWHUDFWLRQ SK\VLFDO JHVWXUH DQG VRQLF GLVSOD\ LQ WKH
SHUIRUPDQFHRI OLYHHOHFWURQLF ³FKDPEHU PXVLF´ :H KDYH
FUHDWHGH[WHQGHGVHQVRUEDVHGLQVWUXPHQWDOLQWHUIDFHVQHZ
PRYHPHQW LQWHUIDFHV IRU GDQFH FRPSOH[ LQWHUDFWLYH
FRPSXWHUPXVLFSHUIRUPDQFHHQYLURQPHQWVDQGDIDPLO\RI
PXOWLFKDQQHO VSKHULFDO VSHDNHU DUUD\V 7KHVH HQKDQFHG
PXVLFDO GHYLFHV KDYH IXQGDPHQWDOO\ FKDQJHG WKH ZD\ LQ
ZKLFK ZH LQWHUDFW LQ SHUIRUPDQFH ERWK SK\VLFDOO\ DQG
VRQLFDOO\H[WHQGLQJWUDGLWLRQDOFKDPEHUPXVLFSUDFWLFHLQD
WHFKQRORJLFDOFRQWH[W
:H FRQVLGHU RXU HQWLUH V\VWHPV IURP SK\VLFDO
LQVWUXPHQWV VHQVRU LQWHUIDFHV LQWHUDFWLYH FRPSXWHU PXVLF
HQYLURQPHQWV WR VSKHULFDO VSHDNHU DUUD\V WR EH ERWK
H[WHQGHG LQVWUXPHQWV DQG QRQOLQHDU FRPSRVLWLRQV
FRPSRVHG LQVWUXPHQWV 7KH FRPELQDWLRQ RI SK\VLFDO
LQWHUIDFHDQGVRQLFUHLQIRUFHPHQWSURYLGHVDXUDODQGWDFWLOH
IHHGEDFNFXHVWKDWDUHHVVHQWLDOWRRXUPXVLFPDNLQJ
7KHVH LQWHUIDFHV H[WHQG DQG DEVWUDFW WUDGLWLRQDO
DSSURDFKHV WR OLYH PXVLFDO SHUIRUPDQFH DQG DOORZ IRU D
GLUHFWSK\VLFDOLW\ DQGPXVLFDO JHVWXUH WREH FRPPXQLFDWHG
LQ HOHFWURQLF PXVLF 2XU DSSURDFK SULYLOHJHV WKH JURXSV
LQWHUDFWLRQ RU DQ LQGLYLGXDO¶V PXVLFDO H[SUHVVLRQ RYHU
LQWHUDFWLRQ ZLWK WKH FRPSXWHU UHHQIRUFLQJ WKH DFWLYLW\
DQGVRFLDOFRQWH[WRIPXVLFPDNLQJ
7KLVSDSHUFRYHUVDERG\RIZRUNIURPWKHSHULRG
RI  LQ ZKLFK ZH GHYHORSHG QXPHURXV QHZ
LQVWUXPHQWV LQWHUIDFHV DQG VRQLF GLVSOD\ GHYLFHV
FXOPLQDWLQJ LQ VHYHUDOVLJQLILFDQWSXEOLF SHUIRUPDQFHV DQG
DOLYH &'³VZDQN´UHOHDVHGRQWKHQHZ&\FOLQJODEHO
&
Website
$VVRFLDWHG LPDJHV VRXQG DQG YLGHR H[DPSOHV RI
³LQWHUIDFH´SHUIRUPDQFHVDUHLQFOXGHGRQDZHESDJHDORQJ
ZLWKIXUWKHULQIRUPDWLRQDQGZULWLQJVDERXWRXUZRUN
KWWSPXVLFSULQFHWRQHGXaFUELQWHUIDFHH[DPSOHVKWPO
COMPOSED INSTRUMENTS
%RWK %DKQ DQG 7UXHPDQ JUHZ XS SOD\LQJ VWULQJ
LQVWUXPHQWV LQ YDULRXV FRQWH[WV IURP RUFKHVWUDV DQG
DFRXVWLFFKDPEHUHQVHPEOHVWRHOHFWULFURFNDQGMD]]EDQGV
³,QWHUIDFH´ EHJDQ DV D SXUHO\ DFRXVWLF GXR JUDGXDOO\
LQWHJUDWLQJ HOHFWURQLFV LQWR WKH HQVHPEOH RYHU D SHULRG RI
VHYHUDO\HDUV7KHLUSULPDU\SHUIRUPDQFHLQWHUIDFHVDUHVWLOO
EXLOW DURXQG WKHLU RULJLQDO VWULQJ LQVWUXPHQWV QRZ XVHG
VRPHWLPHVVLPSO\ DV VXEWOH FRPSXWHUFRQWUROOHUV &RYHUHG
KHUH DUH WKHLU PDLQ SHUIRUPDQFH LQVWUXPHQWV WKH 6HQVRU
%DVV²6%DVV²DQGWKH5ERZ
Rbow - Sensor Bow
7KH 5ERZ FRQVWUXFWHG E\ 7UXHPDQ DQG 3HUU\
&RRN FRQVLVWV RI D WUDGLWLRQDO YLROLQ ERZ ZLWK PRWLRQ
VHQVRUV D ELD[LDODFFHOHURPHWHUPRXQWHG DW WKH IURJ DQG
SUHVVXUHVHQVRUVPRXQWHGEHWZHHQWKHKDLUDQGWKHVWLFNLQ
WZRORFDWLRQV,WFDQEHSOD\HGE\LWVHOIXVLQJWKHVKRXOGHU
RU RWKHU VXUIDFH DV D SRLQW RI UHVLVWDQFHRU RQ DQ\ YLROLQ
7UXHPDQ XVHV LW SULPDULO\ ZLWK D VL[VWULQJ VROLGERG\
HOHFWULF YLROLQ DQG LQ FRPELQDWLRQ ZLWK SLWFK DPSOLWXGH
DQGRYHUWRQHGHWHFWLRQRIWKHHOHFWULFYLROLQVLJQDO
7KH5ERZZDVPRWLYDWHGE\7UXHPDQVIUXVWUDWLRQ
ZLWK FRQYHQWLRQDO LQWHUIDFH GHYLFHV DYDLODEOH WR WKH
YLROLQLVWIRRWSHGDOVVHHPFUXGHDQGDZNZDUGDVH[SUHVVLYH
LQVWUXPHQWVLQFRPSDULVRQWRWKHERZHGVWULQJ%\ LWVHOI
WKH5ERZVXJJHVWVDYDULHW\RINLQGVRISK\VLFDOLQWHUDFWLRQ
ZLWKHOHFWURQLFVRXQGPRYLQJWKHIURJLQYDULRXVSRVLWLRQV
ZKLFK PD\ UHTXLUH PRYLQJ WKH HQWLUH ERG\ DQG VLPSO\
SUHVVLQJWKHERZLQYDULRXVORFDWLRQVDOODUHHIIHFWLYHZD\V
RI SK\VLFDOO\ SOD\LQJ WKH 5ERZ ,Q WKLV ZD\ WKH 5ERZ
WUDQVIRUPVWKH YLROLQLVW LQWR D NLQGRIGDQFHUDQG UHTXLUHV
7UXHPDQ WR PRGLI\ KLV WUDGLWLRQDO YLROLQ WHFKQLTXH :KHQ
SOD\HG ZLWK WKH HOHFWULF YLROLQ WKLV RIWHQ FUHDWHV DQ
LQWHUHVWLQJ WHFKQLFDO FRQIOLFW²FHUWDLQ WHFKQLTXHV ZKLOH
HIIHFWLYH IRU WKH 5ERZ PD\ EH XVHOHVV IRU SOD\LQJ WKH
HOHFWULF YLROLQ DQG YLFHYHUVD )LQGLQJ SRLQWV RI FURVV
VHFWLRQ ZKHUH SOD\LQJ ERWK LQVWUXPHQWV VLPXOWDQHRXVO\ LV
SK\VLFDOO\DQGPXVLFDOO\IXOILOOLQJLV RQHRIWKH IDVFLQDWLQJ
FKDOOHQJHVSUHVHQWHGE\WKH5ERZ
7KH7UXHPDQ&RRN5ERZ
7KH 5ERZ DOVR RIIHUV PDSSLQJ IOH[LELOLW\ WKH
VHQVRU GDWD FDQ EH LQWHUSUHWHG LQ PDQ\ ZD\V DQG WKHVH
LQWHUSUHWDWLRQV FDQ FKDQJH RYHU WKH FRXUVH RI D
SHUIRUPDQFH SKUDVH RU HYHQ ZLWKLQ D JHVWXUH 2QH
SDUWLFXODUO\FRPSHOOLQJPDSSLQJDWWDFKHVYLUWXDOVKDNHUVWR
WKHERZHQFRXUDJLQJ WKHSHUIRUPHUWR VKDNH DQGJ\UDWHLQ
YDULRXV ZD\V WR FRQWURO WKH HQHUJ\ DQG UHVRQDQFHV RI WKH
VKDNHUV ,Q FRPELQDWLRQ ZLWK DQDO\VLV RI WKH YLROLQV DXGLR
VLJQDO WKH 5ERZ PDNHV IRU DQ HIIHFWLYH FRQWUROOHU RI ERWK
SK\VLFDO PRGHOV DQG UHDOWLPH JUDQXODU GHOD\ WHFKQLTXHV
7UXHPDQ PDNHV H[WHQVLYH XVH RI WKH 3H5&RODWH WRRONLW LQ
063 ZKLFK LQFOXGHV ERWK RI WKHVH NLQGV RI V\QWKHVLV DQG
VLJQDOSURFHVVLQJWHFKQLTXHV
7KH ZHEVLWH IRU WKLV SDSHU LQFOXGHV DQ DXGLR
H[DPSOHRI 7UXHPDQSOD\LQJWKHHOHFWULFYLROLQ ZLWK5ERZ
DQG JUDQXODU VDPSOLQJ DQG D YLGHR H[DPSOH RI WKH 5ERZ
ZLWKYLUWXDOVKDNHUV
SBass – the Sensor Bass
7KH6%DVV LQWHUIDFH LV EXLOW RQ D  VWULQJ HOHFWULF
XSULJKW VWULQJ EDVV 7R WKH EDVLF LQVWUXPHQW DQ DUUD\ RI
SLFNXSV KDV EHHQ DGGHG LQFOXGLQJ D FRQWDFW PLFURSKRQH
PRXQWHG XQGHU WKH KDLU RI WKH WLS RI WKH ERZ $ VPDOO
PRXVHWRXFKSDGLVPRXQWHGXQGHUWKHILQJHUERDUGRIIHULQJ
WZRD[HVRI FRQWLQXRXVFRQWUROLQSHUIRUPDQFHDQGVHYHUDO
H[WUDEXWWRQV
6LQFHPXFK RI %DKQ¶V SOD\LQJ LV SL]]LFDWR UDWKHU
WKHQIRFXVLQJ RQWKHERZDVWKH SULPDU\G\QDPLFLQWHUIDFH
VHQVRUV DUH PRXQWHG WR WKH ERG\ RI WKH LQVWUXPHQW LWVHOI
7KHVH LQFOXGH VHYHUDO VOLGH VHQVRUV IRUFH VHQVLWLYH
UHVLVWRUV WXUQ ³SRWV´ DQG D ELD[LDO DFFHOHURPHWHU 7KH
WDFWLOH VHQVRUV DUH SODFHG LQ VXFK D ZD\ WKDW WKH\ FDQ EH
HDVLO\PDQLSXODWHGZKLOHSOD\LQJWKH DFFHOHURPHWHUDOORZV
VOLJKW PRYHPHQW DQG WLOW RI WKH EDVV WR FRQWURO G\QDPLF
DVSHFWVRIWKHVRXQG8VLQJDPLFURFRQWUROOHUPRXQWHGRQ
WKH VLGH RI WKH EDVV WKH VLJQDOV IURP WKHVH VHQVRUV DUH
VFDOHG LQWR 0,', FRQWLQXRXV FRQWURO GDWD DIIHFWLQJ
SHUIRUPDQFH SDUDPHWHUV RI WKH 0$;063 SHUIRUPDQFH
SDWFKUXQQLQJRQWKHPDLQSHUIRUPDQFHFRPSXWHU
%DKQ¶V 0$;063 ³SDWFK´ DOVR PDNHV H[WHQVLYH
XVHRIWKH3H5&RODWH WRRONLWHPSOR\LQJQXPHURXVGHOD\DQG
JUDQXODWLRQURXWLQHVSK\VLFDOPRGHOLQJLQVWUXPHQWVVHYHUDO
GLIIHUHQW NLQGV RI ILOWHULQJ QXPHURXV SDOHWWHV RI VDPSOHG
VRXQGV D PL[LQJURXWLQJ FRQVROH DQG DQ DOJRULWKPLF
PL[LQJ URXWLQH GUDZLQJ XSRQ D ODUJH FROOHFWLRQ RI
FRPSRVHG VRXQGV JURXSHG LQ WH[WXUDO FDWHJRULHV 7KH
LQWHUDFWLYH FRPSXWHUHQYLURQPHQW LV GHVLJQHG WR PD[LPL]H
IOH[LELOLW\ LQ SHUIRUPDQFH WR JHQHUDWH OD\HU DQG URXWH
PXVLFDO PDWHULDOZLWK WKH VDPH LPSURYLVDWLRQDO IUHHGRP DV
KHKDVGHYHORSHGZLWKKLVVWULQJEDVV
$Q DLP LQ FUHDWLQJ WKLV LQWHUIDFH ZDV WR HQDEOH
%DKQ WR WDNH KLV HOHFWURDFRXVWLF PXVLF RXW RI WKH VWXGLR
DQG LQWR D ZLGH UDQJH RI SHUIRUPDQFH FRQWH[WV 7KH
FRQILJXUDWLRQRI WKHVHQVRUVDQGWKHFRPSXWHUSHUIRUPDQFH
LQWHUIDFH LV FRQVWDQWO\ FKDQJLQJ DQG GHYHORSLQJ LQ D ZD\
DQDORJRXV WR WKH PXVLFDO GHYHORSPHQW RI DQ LPSURYLVHU
IURPSHUIRUPDQFHWRSHUIRUPDQFH
7KH ZHEVLWH IRU WKLV SDSHU LQFOXGHV D VHULHV RI
H[FHUSWVIURP%DKQ¶V QHZ &' ³UJ´ ZKLFKLVDVHW RI OLYH
VROR³6%DVV´LPSURYLVDWLRQV
&XUWLV%DKQDQGWKH6%DVV
7UXHPDQRQDVWDJHSRSXODWHGZLWKVSKHUHV
SPHERICAL SPEAKER ARRAYS and SENSAS
(VVHQWLDO WR WKH GHYHORSPHQW RI VXEWOH JHVWXUDO
SHUIRUPDQFH LQWHUIDFHV DUH HTXDOO\ UHVSRQVLYH VRQLF
GLVSOD\V WKH\ DUH RI FHQWUDO LPSRUWDQFH LQ WKH IHHGEDFN
ORRS EHWZHHQ SK\VLFDO JHVWXUH DQG VRQLF UHVSRQVH 7KH
VRQLFGLVSOD\ PXVWUHLQIRUFHWKHQXDQFHRISK\VLFDOJHVWXUH
DQG RIIHU ORFDOL]HG VRQLF IHHGEDFN IRU WKH SHUIRUPHUV RQ
VWDJH
Making Electronic Music More Intimate
$VZHLQWHJUDWHGHOHFWURQLFVDQGFRPSXWDWLRQLQWR
RXU LPSURYLVDWLRQV RXU FRQYHQWLRQDO VRXQG V\VWHP JUHZ
HYHQWXDOO\FRPSOHWHO\REVFXULQJRXUDFRXVWLFEHJLQQLQJV,Q
RXUPRVW UHFHQW VHDVRQZH UHSODFHG RXU 3$VW\OH V\VWHP
ZLWK D VHW RI VL[ VSKHULFDO VSHDNHU DUUD\V RI YDULRXV VL]HV
LQFOXGLQJ WKUHH LQFK VSKHUHV D LQFK VSKHUH DQ
HQRUPRXVLQFKVSKHUH%XEEDGHVFULEHGIXUWKHUEHORZ
DQG DQ LQFK WZHHWHUEDOO 7KHVH VSHDNHUV VWUHZQ DERXW
WKH VWDJH LQ YDULRXV FRQILJXUDWLRQV IXQFWLRQ PXFK OLNH
LQVWUXPHQWDO VRXUFHV DQG FUHDWH D VRXQG ILHOG VRPHZKDW
VLPLODUWRD FRQYHQWLRQDO FKDPEHU HQVHPEOH 7KH VSKHUHV
ORFDOL]H RXU VRXQGV SURYLGLQJGLVWLQFW SRLQWV RQ VWDJH IRU
OLVWHQHUV DQG SHUIRUPHUV WR JUDVS \HW DOVR ILOO VSDFHV DQG
HQFRXUDJHOLVWHQHUVWRZDON DPRQJ XV WKH W\SLFDO SODQH RI
VHSDUDWLRQFUHDWHGE\VWDJHDQG3$V\VWHPLVQRQH[LVWHQW
&RQVHTXHQWO\ WKHVH VSHDNHUV UHQGHU WKH FRQFHSW RI
PRQLWRULQJ LUUHOHYDQW WKHUH LV QR QHHG WR FUHDWH D
PRQLWRU PL[ VLQFH WKH VSHDNHUV DQG URRP GR LW
DXWRPDWLFDOO\ )LQDOO\ WKHVH VSHDNHUV HQJDJH WKH
UHYHUEHUDQWTXDOLWLHV RIWKHSHUIRUPDQFHVSDFHV WKH\ DUHLQ
DOORZLQJWKHHOHFWURQLFVRXQGWREOHQGZLWKDFRXVWLFVRXUFHV
ZKLFKLVHVVHQWLDOZKHQZH SOD\ZLWKJXHVWPXVLFLDQVDQG
PDNLQJ LW XQQHFHVVDU\ WR DGG DUWLILFLDO UHYHUEHUDWLRQ
WKRXJKLWLVVRPHWLPHVLQWHUHVWLQJWRGRVRLQDQ\FDVH
:H ILQG WKDW WKLV VRXQG V\VWHP GUDVWLFDOO\ DIIHFWV
WKHZD\ ZHSOD\RXUHOHFWURQLFLQVWUXPHQWVHQFRXUDJLQJXV
WR SOD\ VRIWO\ DQG H[SORUH VSDUH WH[WXUHV ,W DOVR IHHOV
IDPLOLDU UHPLQGLQJ XV GLVWDQWO\ RI RXU HDUOLHU PRUH
³DFRXVWLF´ LPSURYLVDWLRQV DQG KDV IRUFHG XV WR VHH WKHVH
GLVSOD\ GHYLFHV DV DQ LQVHSDUDEOH FRPSRQHQW RI RXU
H[WHQGHG LQVWUXPHQWDO DQG HQVHPEOH VHWXSV WKH\ DUH DV
PXFK D SDUW RI RXU LQVWUXPHQWV DV WKH VWULQJV DQG EULGJHV
DUH
7UXHPDQDQG%R66$
Sensor/Speaker Arrays: BoSSA and Bubba
*LYHQ WKH LQVWUXPHQWDO TXDOLWLHV RI VSKHULFDO
VSHDNHUDUUD\VLW PDNHV VHQVH WR DFWXDOO\ LPDJLQH WKHP DV
LQVWUXPHQWV 7KH %RZHG6HQVRU6SHDNHU$UUD\ %R66$
FRQVWUXFWHG E\ 7UXHPDQ FRPELQHV D FKDQQHO VSKHULFDO
VSHDNHU DUUD\ ZLWK D YDULHW\ RI VHQVRUV LQVSLUHG E\ WKH
SK\VLFDOLQWHUIDFHRIWKHYLROLQ 7KLVLQVWUXPHQW ZKLFKZDV
RXU ILUVW 6HQVRU6SHDNHU$UUD\ 6HQ6$ KDV EHHQ XVHG LQ
SHUIRUPDQFH PDQ\ WLPHV DQG LV XQGHUJRLQJ FRQVWDQW
UHILQHPHQW%R66$VXJJHVWHGWKHSRVVLELOLW\RIDQHZNLQG
RI HOHFWURQLF FKDPEHU PXVLF DQG ZLWK WKLV LQ PLQG %DKQ
FRQVWUXFWHG DQ HQRUPRXV LQFK FKDQQHO VSKHULFDO
VSHDNHU%XEEDDQGDPDWFKLQJPXFKVPDOOHUVHQVRUEDOO
WKH%XEED%DOOWR³SOD\%XEED
,Q FRPELQDWLRQ %R66$ DQG %XEED IRUP D
FRPSHOOLQJ LI VRPHZKDW EL]DUUH HQVHPEOH %RWK 6HQ6$V
UHRULHQWRXUUHODWLRQVKLSZLWKHOHFWURQLFVRXQGDQGFRQYH\D
VWURQJ VHQVH RI SK\VLFDOLW\ LQ SHUIRUPDQFH 1R ORQJHU
GHWDFKHGIURPWKHVRXQGVRXUFHZHRIWHQIHHODVWKRXJKZH
KROG WKH VRXQG LQ RXU KDQGV 7KH H[SHULHQFH LV VLPLODU WR
SHUIRUPLQJ ZLWK DQ DFRXVWLF LQVWUXPHQW DQG WKH HIIRUW
UHTXLUHG FDQ EH HTXDOO\ H[KDXVWLQJ :H DUH SDUWLFXODUO\
LPSUHVVHG E\ WKH VHQVH RI SUHVHQFH DQG LQWLPDF\ WKH\
SURYLGH *LYHQWKHODFNRIDQ\GLUHFWDFRXVWLFVRXQGVRXUFH
ZHKDYH IUHHGRP WR UHGHILQH WKH PDSSLQJVIURP VHQVRU WR
V\QWKHVLVVLJQDO SURFHVVLQJ SDUDPHWHU RQ WKH IO\ ZKLFK LQ
WXUQ WUDQVIRUPV RXU SK\VLFDO UHODWLRQVKLS ZLWK WKH
LQVWUXPHQWLQDVHQVHLQVWUXPHQWGHVLJQLWVHOIEHFRPHVDQ
DVSHFW RI SHUIRUPDQFH ZH GRQ¶W KDYH WR JR EDFN WR WKH
VKRS WR DOWHU WKH ³IHHO´ RI RXU LQVWUXPHQWV ZH GR LW LQ
UHDOWLPH
7KH ZHEVLWH IRU WKLV SDSHU LQFOXGHV LPDJHV RI
%R66$ DQG %XEED DQG YLGHR RI D SHUIRUPDQFH RI WKH
/REVWHU4XDGULOOHIRU%R66$
COLLABORATIVE PERFORMANCES
$ IXOO ³LQWHUIDFH´ SHUIRUPDQFH LQYROYHV QRW RQO\
VROR DQG GXR SHUIRUPDQFHV E\ 7UXHPDQ DQG %DKQ EXW
FROODERUDWLYH FRPSRVLWLRQV DQG SHUIRUPDQFHV ZLWK RWKHUV
HPSOR\LQJ VLPLODU LQWHUDFWLYH WHFKQRORJLHV 7KLV LQFOXGHV
LQWHUDFWLYH GDQFH SHUIRUPDQFHV ZLWK 7RPLH +DKQ
SHUIRUPDQFHV ZLWK :DFRP 7DEOHWVSRNHQZRUG DUWLVW
0RQLFD 0XJDQ FROODERUDWLYH LPSURYLVDWLRQV ZLWK 3HUU\
&RRN DQG LQWHUDFWLYH YLGHR SHUIRUPDQFHV ZLWK YDULRXV
DUWLVWV
+DKQLQ6WUHDPV
Streams
6WUHDPV LV DQ LQWHUDFWLYH VRQLF FRQWH[W IRU OLYH
SHUIRUPDQFH GHYHORSHG E\ &XUWLV %DKQ DQG
GDQFHUHWKQRPXVLFRORJLVW7RPLH +DKQ:HDULQJ D VHQVLQJ
GHYLFHGHYHORSHGE\ %DKQ+DKQ IUHHO\ QDYLJDWHVDYLUWXDO
VRQLF JHRJUDSK\ FRQVLVWLQJ RI V\QWKHWLF VRXQGV DQG QRQ
OLQHDU SRHWU\ 7KURXJK KHU PRYHPHQW VKH LV DEOH WR
QHJRWLDWH DQG FRQWURO DOO DVSHFWV RI WKH VRQLF VWUXFWXUH RI
WKLVYLUWXDOVRXQGVFDSH:LWKHDFKJHVWXUH6WUHDPVUHFDOOV
ERGLHVRIZDWHUDQGODQGWHFKQRORJ\DIORZRILQIRUPDWLRQ
WUDQVPLVVLRQ DQG OLTXLG VWDWHV 7KURXJK WHFKQRORJ\ WKH
SHUIRUPDQFHWR\V ZLWK WKH HSKHPHUDOTXDOLW\ RI VRXQG DQG
WKH SK\VLFDO PHPRU\ RI WLPH VRQLF VSDFH DQG VHQVRU\
H[SHULHQFH
6HQVRUVRQ+DKQVKDQGVHDFKVHQVHSUHVVXUHDQG
D[LV RI WLOW PDNLQJ  FKDQQHOV RI FRQWLQXRXV FRQWURO
LQIRUPDWLRQDYDLODEOHLQ SHUIRUPDQFH7KH GDWD IURP WKHVH
VHQVRUV LV VHQW WR D PLFURFRQWUROOHU ZKHUH LW LV WUDQVODWHG
LQWR 0,', PHVVDJHV DQG EURDGFDVW WR WKH FRPSXWHU
RIIVWDJH $ 0$;063 SDWFK RQ WKH FRPSXWHU PDSV KHU
PRYHPHQWV LQWR YDULRXV VDPSOHG VRXQGV DQG '63
DOJRULWKPVVHQGLQJWKHPWRDQFKDQQHODXGLRV\VWHP
%DKQ+DKQ ZLWK D ILIWHHQ \HDU KLVWRU\ RI
FROODERUDWLYH SHUIRUPDQFH SURSRVH WKDW WKH QDWXUH RI WKH
WHFKQRORJLHV HPSOR\HG LQ 6WUHDPV IXQGDPHQWDOO\
FKDQJHGDVSHFWVRI WKHLUFROODERUDWLRQ UHJDUGLQJPRYHPHQW
DQGVRXQGFRPSRVLWLRQ5DWKHUWKHQ VWUXFWXULQJ WLPH DV LQ
WUDGLWLRQDOKLVWRULFDO GDQFHPXVLF FROODERUDWLRQV WKH
FRQFHSWLRQ RI 6WUHDPV ZDV EDVHG RQ FRPSRVLQJ WKH
ERG\ ,Q WKLV SURFHVV SK\VLFDO DWWULEXWHV RI WKH GDQFHUV
PRYHPHQWYRFDEXODU\ ZHUHDQDO\]HGWRH[WUDFW SDUWLFXODUO\
VDOLHQW DQG PHDQLQJIXO JHVWXUHV $ SDUDPHWHUPDSSLQJ
V\VWHP ZDV GHYLVHGDOORZLQJ WKH GDQFHU WR IUHHO\ QDYLJDWH
DQGOD\HUVRQLFHOHPHQWVWRFRQVWUXFWDFRPSOH[WH[WXUH
,Q6WUHDPV+DKQ GUDZVRQRYHUWKLUW\ \HDUVRI
H[SHULHQFHLQ -DSDQHVHWUDGLWLRQDO DQGH[SHULPHQWDOGDQFH
7KH WUDGLWLRQ RI -DSDQHVH GDQFH LV EURXJKW WR D
FRQWHPSRUDU\ H[SUHVVLYH PRPHQWZLWK WKH VHQVRU LQWHUIDFH
WDSSLQJ WKH VLWHRI KHU SHUVRQDO HPERGLHGNQRZOHGJH RI
WKLV WUDGLWLRQ -XVW DV WKH VHQVHV DUH DQ LQGLYLGXDOV
LQWHUIDFH WR WKH ZRUOG WHFKQRORJLFDO LQWHUIDFHV FDQ
LQWHJUDWH YRFDEXODULHV RI DQFLHQWWUDGLWLRQV RI SHUIRUPDQFH
ZLWKWKHFRQWHPSRUDU\ERG\
7KH VRQLF SDOHWWH HPSOR\HG LQ 6WUHDPV GUDZV
IURP D FRPELQDWLRQ RI UHDOWLPH GLJLWDO VLJQDO SURFHVVLQJ
SK\VLFDO PRGHOLQJ V\QWKHVLV DOJRULWKPV DJDLQ IURP
3H5&RODWH DQG VWRUHG VRXQG VDPSOHV RI WH[W$W WKH KHDUW
RI WKH FRPSXWHU SHUIRUPDQFH V\VWHP LV D GLJLWDO PRGHO RI
WKH ILOWUDWLRQ FKDUDFWHULVWLFV RI WKH YRFDO WUDFW DOO RWKHU
VRXQGV DUH SDVVHG WKURXJK WKLV VRQLF PRGHO HYRNLQJ WKH
LPDJHWKDWWKURXJKKHUPRYHPHQWVWKHGDQFHUVSHDNVWKH
PXVLF 2WKHU VRXQG VRXUFHV DUH GUDZQ IURP WKH WHFKQLTXH
RI SK\VLFDO PRGHOLQJ V\QWKHVLV ZKLFK ZKHQ SDLUHG ZLWK
SK\VLFDOPRYHPHQWVHQVRUVSURYLGHVDSDUWLFXODUO\ULFKDQG
HYRFDWLYH VRQLF ODQGVFDSH 7KH GDQFHU DOVR SURYLGHV GDWD
FRQWUROOLQJ WKH FRQVWUXFWLRQ RI DQ DOJRULWKPLF QRQOLQHDU
WH[W GUDZLQJ IURP ZRUGV UHODWLQJ WR GUHDPV IORZ DQG
FRPPXQLFDWLRQ
7KH WLPHVWUXFWXUH RI 6WUHDPV LV QRW VSHFLILHG
WKH GDQFHU LV IUHH WR H[SORUH WKH VRXQGV DFFRUGLQJ WR KHU
IHHOLQJVLQWKHPRPHQW +RZHYHUGUDZLQJXSRQ D EDVLV RI
KLJKO\ VSHFLILHG DOJRULWKPLF FRPSRVLWLRQDO SURFHVVHV
QHLWKHU LV LW LPSURYLVHG 7KH FRPSRVLWLRQ HPERGLHV
SK\VLFDO PDSSLQJV DV WKH\ UHODWH WR WKH VSHFLILF GDQFHUV
PRYHPHQW YRFDEXODU\ DQG WKH VRXQGZRUOG RI WKH
FRPSRVLWLRQ FUHDWLQJ D KLJKO\ SHUVRQDO DQG PRYLQJ VLWH
VSHFLILFVWDWHPHQWDSHUVRQDOVRQLFJHRJUDSK\
7KH ZHEVLWH IRU WKLV SDSHU LQFOXGHV LPDJHV DQG
VWUHDPLQJYLGHRRIDSHUIRUPDQFHRI³6WUHDPV´
+DKQDV3LNDSLND
SPeaPer Interface, the “Sensor Speaker Performer”
$V DQ RXWJURZWK RI LQYHVWLJDWLRQV LQ WKH XVH RI
6HQVRU6SHDNHU $UUD\V IRU OLYH SHUIRUPDQFH ZLWK
³LQWHUIDFH´ ZH EHFDPH LQWHUHVWHG LQ WKH LGHD RI PRXQWLQJ
QRW RQO\ VHQVRUV EXW DOVR VPDOO VSHDNHUV RQ D OLYH
SHUIRUPHU 7KH 63HD3HU 6HQVRU6SHDNHU 3HUIRUPHU
ZLUHOHVVLQWHUIDFHEXLOGVRQWKHVHQVRUGHVLJQIRU³VWUHDPV´
DGGLQJ D VPDOO ZLUHOHVV DPSOLILHU DQG WZR DUPPRXQWHG
FRD[LDOVSHDNHUV7ZRFKDQQHOVRIWKHFRPSXWHUJHQHUDWHG
VRXQGDUH VHQWWR7RPLHVDUPVGLVFUHHWLQIRUPDWLRQWRWKH
OHIWDQGULJKW7KHUHPDLQLQJFKDQQHOVRI DXGLR DUH VHQW
WRVWHUHRVSKHULFDOVSHDNHUDUUD\VRQVWDJH
7KH GDQFHPRYHPHQW FRPSRVLWLRQ ³SLNDSLND´
PHDQLQJ WZLQNOLQJ LQ -DSDQHVH VRQLILHV KHU PRYHPHQW
ZLWK VDPSOHG VRXQGV RI PDFKLQHU\ JHDUV DQG UDFKHWV
3LNDSLNDD FKDUDFWHU LQIOXHQFHG E\ DQLPH DQG PDQJD
-DSDQHVHSRSDQLPDWLRQDQGFRPLFVHPERGLHVPRYHPHQWV
IURP EXQUDNX SXSSHW WKHDWHU 7KH FRQFHSW RI WKH VRQLF
SXQFWXDWLRQ RI PRYHPHQW LV GUDZQ GLUHFWO\ IURP WKH
EXQUDNX PXVLFDO WUDGLWLRQ KRZHYHU WKH DFWXDO VRXQGV DUH
QRW GUDZQ IURP EXQUDNX PXVLFDO YRFDEXODU\ 7KH VRXQGV
HPDQDWHIURPKHUERG\PRXQWHGVSHDNHUVFUHDWHDQHZVRUW
RIDXGLRDOLDVIRUKHUFKDUDFWHUDVRQLFPDVN
7KH ZHEVLWH IRU WKLV SDSHU LQFOXGHV LPDJHV DQG
VWUHDPLQJYLGHRRIDSHUIRUPDQFHRI³3LNDSLND´
SUMMARY
:H VHH DQ DFFHOHUDWLQJ SDUDGLJP VZLWFK LQ
FRPSXWHU PXVLF IURP EHLQJ D ILHOG SULPDULO\ FRQFHUQHG
ZLWK FRPSRVLWLRQ WR RQH HTXDOO\ LQYROYHG ZLWK
SHUIRUPDQFH ,Q WKH VRFLDO DFWLYLW\ RI HQVHPEOH
SHUIRUPDQFH PXVLFDO LQWHUIDFH GHVLJQ PXVW EH FRQFHUQHG
ZLWK WKH FRPPXQLFDWLRQ RI JHVWXUH DQG VRQLF QXDQFH :H
VHHWKH LPSRUWDQFHRIWKLV QRW RQO\LQWHUPV RI WKHSK\VLFDO
FRPPXQLFDWLRQ EHWZHHQ PHPEHUV RI D PXVLFDO HQVHPEOH
EXWDOVRIRUWKHFRPPXQLFDWLRQRIHOHFWURQLFPXVLFWRDQ
DXGLHQFH7KHLQFOXVLRQRIVRXQGUHLQIRUFHPHQWLQPXVLFDO
LQWHUIDFH GHVLJQV DOVR SURYLGHV LPSRUWDQW DXUDO DQG WDFWLOH
IHHGEDFN FXHV WR WKH SHUIRUPHUVDOORZLQJ D PRUH LQWLPDWH
LQWHUDFWLRQZLWKHOHFWURQLFPXVLFSURGXFWLRQ ,QWKLVVHQVH
RXU ³LQWHUIDFHV´ RXU ³LQVWUXPHQWV´ LQFOXGH WKH HQWLUH
V\VWHPV IURP SK\VLFDO VHQVLQJ WR FRPSXWHU DOJRULWKPV WR
VRQLFGLVSOD\GHYLFHV7KLVGHFUHDVHVWKHJHQHUDOLW\RI WKH
PXVLF ZH SURGXFH LW LV QRW D JHQHULF ³WDSH´ WKDW FDQ EH
UHSURGXFHG RQ DQ\ VRXQG V\VWHP ,W LV UDWKHU DQ
LGLRV\QFUDWLF VRQLF SHUIRUPDQFH LQVWDOODWLRQ IRU D XQLTXH
IDPLO\RILQVWUXPHQWV
,QWKLVLQVWUXPHQWDOPRGHORXUJRDO LVWRSULYLOHJH
DQG HQKDQFH WKH KXPDQ LQWHUDFWLRQ DQG VRFLDO FRQWH[W RI
PXVLF PDNLQJ :H GR QRW QHFHVVDULO\ VHH WKH V\VWHPV DV
³LQWHUDFWLYH´ LQ WKH VHQVH WKDW ³LQWHUDFWLRQ´ LPSOLHV D VRUW
RIPXVLFDODXWRQRP\ IRU WKH WHFKQRORJ\EXW UDWKHU D JRDO
PD\ EH WR KDYH DQ HOHFWURQLF PXVLF LQWHUIDFH DV
³LQWHUDFWLYH´ DV DQ DFRXVWLF SLDQR RU D YLROLQ 7KH
GLIIHUHQFHEHWZHHQWKHDFRXVWLFLQVWUXPHQWDQGDQDGYDQFHG
LQWHUIDFH VXFK DV WKLV LV LQ WKH DELOLW\ WR UHFRQILJXUH DQG
DOWHUWKHPDQ\ SDUDPHWHUV RI FRQWURO DQG WKHLU VLJQLILFDQFH
LQ SHUIRUPDQFH7KLV G\QDPLF PDSSLQJ H[WHQGV WKH
SRWHQWLDOVRI WKH LQVWUXPHQWV LQWR WKH UHDOP RI D QRQOLQHDU
FRPSRVLWLRQ 7KHVH G\QDPLF ³FRPSRVHG LQVWUXPHQWV´ DUH
GHILQHG E\ WKH FDSDELOLWLHV RI WKH DFRXVWLF DQG ³YLUWXDO´
DVSHFWV RI WKH LQWHUIDFHV WKH FROOHFWLRQ RI UHVRXUFHV IRU
FRPSXWHUVRXQG SURGXFWLRQDQGSURFHVVLQJ DQG WKH VRQLF
GLVSOD\ RI WKH SHUIRUPDQFH ,Q RXU ZRUN ZLWK ³LQWHUIDFH´
ZH FKRRVH WR NHHS WKHVH SRWHQWLDOV DV IUHHO\ RUJDQL]HG DV
SRVVLEOH DOORZLQJ WKH H[SORUDWLRQ RI WKHLU SRWHQWLDOV LQ
LPSURYLVDWRU\HQVHPEOHSHUIRUPDQFH
REFERENCES
 &RRN3 5 DQG ' 7UXHPDQ 6SKHULFDO 5DGLDWLRQ IURP
6WULQJHG ,QVWUXPHQWV 0HDVXUHG 0RGHOHG DQG
5HSURGXFHG -RXUQDO RI WKH &DWJXW $FRXVWLFDO 6RFLHW\
1RYHPEHU
 7UXHPDQ ' DQG 3 5 &RRN ³%R66$ 7KH
'HFRQVWUXFWHG 9LROLQ 5HFRQVWUXFWHG´ 3URF RI WKH
,QWHUQDWLRQDO &RPSXWHU 0 DXVLF &RQIHUHQFH %HLMLQJ
2FWREHU
 7UXHPDQ' &5 %DKQ DQG 3 5 &RRN ³$OWHUQDWLYH
9RLFHV IRU (OHFWURQLF 6RXQG6SKHULFDO 6SHDNHUV DQG
6HQVRU6SHDNHU $UUD\V 6HQ6$V´ 3URF RI WKH
,QWHUQDWLRQDO &RPSXWHU 0XVLF &RQIHUHQFH %HUOLQ
*HUPDQ\
 7UXHPDQ ' DQG 5 /XNH 'X%RLV 3H5&RODWH
KWWSPXVLFFROXPELDHGX3H5&RODWH
 %DKQ&³UJ´(OHFWURQLF0XVLF)RXQGDWLRQ&'
 %DKQ & 7UXHPDQ ' ³VZDQN´ & &'
IRUWKFRPLQJ
... Bahn added a mouse touch pad to the fingerboard of the SBass [1], while Grosshauser and Troester's sensor fingerboard had embedded FSRs [6,7]. Grosshauser and Troester's instrument was used to study how violinists play and when they were pressing too hard with their fingers. ...
... Four sensor strips made from ProtoPasta's black conductive PLA slide into the slots. 1 The strips are designed to slide in and are secured with a press fit. If they become damaged, they can slide out to be replaced. ...
Conference Paper
Full-text available
We present TRAVIS II, an augmented acoustic violin with touch sensors integrated into its 3D printed fingerboard that track lefthand finger gestures in real time. The fingerboard has four strips of conductive PLA filament which produce an electric signal when fingers press down on each string. While these sensors are physically robust, they are mechanically assembled and thus easy to replace if damaged. The performer can also trigger presets via four FSRs attached to the body of the violin. The instrument is completely wireless, giving the performer the freedom to move throughout the performance space. While the sensing fingerboard is installed in place of the traditional fingerboard, all other electronics can be removed from the augmented instrument, maintaining the aesthetics of a traditional violin. Our design allows violinists to naturally create music for interactive performance and improvisation without requiring new instrumental techniques. In this paper, we describe the design of the instrument, experiments leading to the sensing fingerboard, and performative applications of the instrument.
... If external hardware (e.g., a mixer) splits each say both into M and into a loudspeaker then with an n-channel audio interface each AD input is a say and each DA output is a hear. 3 Otherwise if there are 2n DA outputs then there can also be one carrying each say to a speaker. ...
... As in many "laptop orchestras", projecting each instrument's sound from a spatially distinct location greatly assists both performers and audience localize sound [3]. The various network topologies can naturally give rise to various spatialization patterns, e.g., the passing around a sound gesture is more dramatic when the sound discernibly travels a spatial path in parallel with the signal processing path. ...
Conference Paper
Full-text available
We document results from exploring ensemble feedback in structured electroacoustic improvisations. A conceptual justification for the explorations is provided, in addition to discussion of tools and methodologies. Physical configurations of intra-ensemble feedback networks are documented, along with qualitative analysis of their effectiveness.
... There was one augmented bass project, and another two augmented violin projects, that successfully added touch sensors to the fingerboard. Bahn and Trueman (2001) added a mouse touch pad to the fingerboard of the SBass, Grosshauser and Troester's sensor fingerboard had embedded FSRs (Grosshauser 2008;Grosshauser, Großekathoefer, and Hermann 2010;Grosshauser, andTroester 2013, 2014). The instrument by Grosshauser and coworkers was used to study how violinists play and when they were pressing too hard with their fingers. ...
Article
Full-text available
We present the second iteration of a Touch-Responsive Augmented Violin Interface System, called TRAVIS II, and two compositions that demonstrate its expressivity. TRAVIS II is an augmented acoustic violin with touch sensors integrated into its 3-D printed fingerboard that track left-hand finger gestures in real time. The fingerboard has four strips of conductive PLA filament that produce an electric signal when fingers press down on each string. Although these sensors are physically robust, they are mechanically assembled and thus easy to replace if damaged. The performer can also trigger presets via four sensors attached to the body of the violin. The instrument is completely wireless, giving the performer the freedom to move throughout the performance space. Although the sensing fingerboard is installed in place of the traditional fingerboard, all other electronics can be removed from the augmented instrument, maintaining the aesthetics of a traditional violin. Our design allows violinists to naturally create music for interactive performance and improvisation without requiring new instrumental techniques. The first author composed two compositions to highlight TRAVIS II: “Dream State” and “Kindred Dichotomy.” Both of these compositions involve improvisation in their creative process and include interactive visuals. In this article we describe the design of the instrument, experiments leading to the sensing fingerboard, performative applications of the instrument, and compositional considerations for the resultant pieces.
... As a digital music instrument, the BoSSA heralded a return to a more classical acoustic instrument paradigm, in which sound directly emanates from the instrument being performed itself. These ideas were further explored in the musical duo "interface," a collaboration between Trueman and Bahn, the former of whom performed with BoSSA and the latter of whom projected the sound of an extensively customized electric bass through a number of spherical and hemispherical speakers in close proximity [1]. Trueman considers the concepts underlying these efforts and similar work with the Princeton Laptop Orchestra [11] using two criteria, sonic presence and performative attention [12]. ...
Conference Paper
Full-text available
The Fragment String is a new digital musical instrument designed to reinterpret and reflect upon the sounds of the instruments it is performed in collaboration with. At its core, it samples an input audio signal and allows the performer to replay these samples through a granular resynthesizer. Normally the Fragment String samples an acoustic instrument that accompanies it, but in the absence of this input it will amplify the ambient environment and electronic noise of the input audio path to audible levels and sample these. This ability to leverage both structural, tonal sound and unstructured noise provide the instrument with multiple dimensions of musical expressivity. The relative magnitude of the physical gestures required to manipulate the instrument and control the sound also engage an audience in its performance. This straightforward yet expressive design has lent the Fragment String to a variety of performance techniques and settings. These are explored through case studies in a five year history of Fragment String-based compositions and performances, illustrating the strengths and limitations of these interactions and their sonic output.
... For example, we commonly hear of musicians seeking aesthetic goals which instrumentalise their technologies (see Wishart's remarks at the beginning of this chapter) or make them transparent (e.g. Bahn and Trueman 2001). The artefacts they work with are mere means to aesthetic aims. ...
Article
The right of John Bowers to be identified as the author of this work has been asserted. The contents of this work should not be reproduced without the permission of the author, except for the purpose of limited, attributed quotation. Improvising Machines
... While the creation (or, better, the composition [1]) of new musical instruments can provide composers and performers with tools for new music and musical languages, the instruments produced are often too simplistic (like the rather naïve new incarnations of traditional step sequencers and drum machines), lack of playability (often due to the delegation of too many performative decisions to the instrument, not providing an effective fly-by-wire alternative), or are too different from traditional instruments (i.e. those with a social agreement on how they should sound, how they should be played or how they relate to others instruments output). ...
Article
The extended piano(s), the extended body(ies) is an ongoing research project on the piano as an extended instrument started in 2014 by the pianist and composer Hara Alonso. Over the years, it has been developed in different directions and forms ranging from composition, improvisation and installation. The research questions are: How can we rethink the piano beyond its history and technology? How can we expand it by incorporating embodied composition methods? This research intends to develop tools to augment the piano qualities in terms of sound (timbre) and the performative-conceptual elements through improvisation, composition, electroacoustic elements, and performance. These enhanced elements have changed and opened up a wide range of possibilities to interact with the piano, both sonically and physically, widening the piano practices. The pianist’s body has a fundamental value in the research as the initiator of the sound, gesture, and intention, becoming the point of departure in this research. The investigation intertwines two axes: 1) The piano as a sound generator and its expansion through digital means, and 2) The pianist’s body is the primary instrument. This article covers the research period from 2014 to 2021, in which Hara Alonso developed numerous works for extended piano that have been displayed in several public performances.
Conference Paper
Acoustic instruments such as the violin excel at translating a performer’s gestures into sound in ways that can evoke a wide range of affective qualities. They require finesse when interacting with them, producing sound and music in an extremely responsive manner. This richness of interaction is simultaneously what makes acoustic instruments so challenging to play, what makes them interesting to play for long periods of time, and what makes overcoming that difficulty so worthwhile to both performers and listeners. Such an ability to capture human complexity, intelligence, and emotion through live performance interfaces is the core of what we are interested in salvaging from acoustic instruments, and bringing into the development of advanced HCI methods through the Musical Interface Technology Design Space, MITDS [12, 13].
Conference Paper
Full-text available
In this paper we report on the current state of the newly established Princeton Laptop Orchestra (PLOrk), a collection of 15 meta-instruments each consisting of a laptop computer, interfacing equipment, and a hemispherical speaker. Founded in the fall of 2005, PLOrk represents the first laptop ensemble of its size and kind, and brings together many of our research and aesthetic interests as musicians, composers, and computer scientists. Here we chronicle the first steps of the ensemble, including details about the technology, the music, compositional challenges, and what we have learned in the process.
Article
We describe several recent applications of spherical speakers (multi-channel, outward-radiating geodesic speaker arrays) and Sensor- Speaker-Arrays (SenSAs: combinations of various sensor devices with spherical speaker arrays). We discuss the design and construction of these systems, and, more generally, the new "voices" they give to electronic sound.
Article
The background to the creation of an international resource organisation is discussed. The author goes on to describe various activities of the Foundation, including the provision of hard-to-obtain CDs and access to other materials of interest to the electroacoustic community. The Foundation maintains a substantial presence on the World Wide Web: http://www.emf.org