Conference PaperPDF Available

Supporting introspective human behaviours through technologies

Authors:

Abstract and Figures

Almost all technology supported activities we perform today involve a device with computational power able to collect data that can give information about our activities as well as, with the appropriate sensors, about our physiological status. While recording user data is not particularly novel, in our work, we concern ourselves with methods that people can use to gather and analyze data about themselves as they go about everyday work and leisure activities in order to better support self-monitoring and self-understanding. Our aim is to enable people to detect causality relationships in their behaviours either for serving their curiosity or, as we hope, for really empowering them with a tool for self-changes. In this 'work in progress' paper we describe ongoing work towards these ends. We start out by a motivation and short description of our work, followed by an exemplar scenario on 'preventive healthcare' for the system we envision. Then we describe some of the most relevant and influential related work before describing the system design and the main challenges, followed by an overview of the current status and our future vision.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The use of the computer as a model, metaphor, and modelling tool has tended to privilege the 'cognitive' over the 'affective' by engendering theories in which thinking and learning are viewed as information processing and affect is ignored or marginalised. In the last decade there has been an accelerated flow of findings in multiple disciplines supporting a view of affect as complexly intertwined with cognition in guiding rational behaviour, memory retrieval, decision-making, creativity, and more. It is time to redress the imbalance by developing theories and technologies in which affect and cognition are appropriately integrated with one another. This paper describes work in that direction at the MIT Media Lab and projects a large perspective of new research in which computer technology is used to redress the imbalance that was caused (or, at least, accentuated) by the computer itself.
Article
This article presents a framework for emotional intelligence, a set of skills hypothesized to contribute to the accurate appraisal and expression of emotion in oneself and in others, the effective regulation of emotion in self and others, and the use of feelings to motivate, plan, and achieve in one's life. We start by reviewing the debate about the adaptive versus maladaptive qualities of emotion. We then explore the literature on intelligence, and especially social intelligence, to examine the place of emotion in traditional intelligence conceptions. A framework for integrating the research on emotion-related skills is then described. Next, we review the components of emotional intelligence. To conclude the review, the role of emotional intelligence in mental health is discussed and avenues for further investigation are suggested.
Article
Specialized elements of hardware and software, connected by wires, radio waves and infrared, will be so ubiquitous that no one will notice their presence.
Article
This chapter discusses about the computer for the 21st century and the tabs. Tabs are the smallest components of embodied virtuality. Because they are interconnected, tabs will expand on the usefulness of existing inch-scale computers, such as the pocket calculator and the pocket organizer. Tabs will also take on functions that no computer performs today. For example, computer scientists at PARC and other research laboratories around the world have begun working with active badges—clip-on computers roughly the size of an employee ID card, first developed by the Olivetti Cambridge research laboratory. These badges can identify themselves to receivers placed throughout a building, thus making it possible to keep track of the people or objects to which they are attached. The chapter also discusses about page-size machines known as pads.
Article
A lot has been written about the Internet and where it is leading. We will say only a little. The Internet is deeply influencing the business and practice of technology. Millions of new people and their information have become interconnected. Late at night, around 6am while falling asleep after twenty hours at the keyboard, the sensitive technologist can sometimes hear those 35 million web pages, 300 thousand hosts, and 90 million users shouting "pay attention to me!" The important waves of technological change are those that fundamentally alter the place of technology in our lives. What matters is not technology itself, but its relationship to us.
Article
Can computers change what you think and do? Can they motivate you to stop smoking, persuade you to buy insurance, or convince you to join the Army? "Yes, they can," says Dr. B.J. Fogg, director of the Persuasive Technology Lab at Stanford University. Fogg has coined the phrase "Captology"(an acronym for computers as persuasive technologies) to capture the domain of research, design, and applications of persuasive computers.In this thought-provoking book, based on nine years of research in captology, Dr. Fogg reveals how Web sites, software applications, and mobile devices can be used to change peoples attitudes and behavior. Technology designers, marketers, researchers, consumers-anyone who wants to leverage or simply understand the persuasive power of interactive technology-will appreciate the compelling insights and illuminating examples found inside. Persuasive technology can be controversial-and it should be. Who will wield this power of digital influence? And to what end? Now is the time to survey the issues and explore the principles of persuasive technology, and B.J. Fogg has written this book to be your guide.
Article
The mystery surrounding emotions, how they work and how they affect our lives has not yet been unravelled. Scientists still debate the real nature of emotions, whether they are evolutionary, physiological or cognitive are just a few of the different approaches used to explain affective states. Regardless of the various emotional paradigms, neurologists have made progress in demonstrating that emotion is as, or more, important than reason in the process of making decisions and deciding actions. The significance of these findings should not be overlooked in a world that is increasingly reliant on computers to accommodate to user needs. In this paper, a novel approach for recognizing and classifying positive and negative emotional changes in real time using physiological signals is presented. Based on sequential analysis and autoassociative networks, the emotion detection system outlined here is potentially capable of operating on any individual regardless of their physical state and emotional intensity without requiring an arduous adaptation or pre-analysis phase. Results from applying this methodology on real-time data collected from a single subject demonstrated a recognition level of 71.4% which is comparable to the best results achieved by others through off-line analysis. It is suggested that the detection mechanism outlined in this paper has all the characteristics needed to perform emotion recognition in pervasive computing.