Increasingly, researchers and developers of knowledge based systems (KBS) have been incorporating the notion of context. For instance, Repertory Grids, Formal Concept Analysis (FCA) and Ripple-Down Rules (RDR) all integrate either implicit or explicit contextual information. However, these methodologies treat context as a static entity, neglecting many connectionists' work in learning hidden and
... [Show full abstract] dynamic contexts, which aid their ability to generalize. This paper presents a method that models hidden context within a symbolic domain in order to achieve a level of generalisation. The method developed builds on the already established Multiple Classification Ripple-Down Rules (MCRDR) approach and is referred to as Rated MCRDR (RM). RM retains a symbolic core, while using a connection based approach to learn a deeper understanding of the captured knowledge. This method is applied to a number of online classification environments and results indicate that the method can learn the information that experts have difficulty providing.