Conference Paper

Online Speed Adaptation Using Supervised Learning for High-Speed, Off-Road Autonomous Driving.

Conference: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007
Source: DBLP

ABSTRACT

The mobile robotics community has traditionally addressed motion planning and navigation in terms of steering decisions. However, selecting the best speed is also important - beyond its relationship to stopping distance and lateral maneuverability. Consider a high-speed (35 mph) autonomous vehi- cle driving off-road through challenging desert ter- rain. The vehicle should drive slowly on terrain that poses substantial risk. However, it should not daw- dle on safe terrain. In this paper we address one aspect of risk - shock to the vehicle. We present an algorithm for trading-off shock and speed in real- time and without human intervention. The trade-off is optimized using supervised learning to match hu- man driving. The learning process is essential due to the discontinuous and spatially correlated nature of the control problem - classical techniques do not directly apply. We evaluate performance over hun- dreds of miles of autonomous driving, including performance during the 2005 DARPA Grand Chal- lenge. This approach was the deciding factor in our vehicle's speed for nearly 20% of the DARPA com- petition - more than any other constraint except the DARPA-imposed speed limits - and resulted in the fastest finishing time. In mobile robotics, motion planning and navigation have tra- ditionally focused on steering decisions. This paper presents speed decisions as another crucial part of planning - beyond the relationship of speed to obstacle avoidance concerns, such as stopping distance and lateral maneuverability. Consider a high-speed (35 mph) autonomous vehicle driving off-road through challenging desert terrain. We want the vehicle to drive slower on more dangerous terrain. However, we also want to minimize completion time. Thus, the robot must trade-off speed and risk in real-time. This is a natural pro- cess for human drivers, but it is not at all trivial to endow a robot with this ability. We address this trade-off for one component of risk: the shock the vehicle experiences. Minimizing shock is impor- tant for several reasons. First, shock increases the risk of damage to the vehicle, its mechanical actuators, and its elec- tronic components. Second, a key perceptive technology, laser range scanning, relies on accurate estimation of orien- tation. Shock causes the vehicle to shake violently, making accurate estimates difficult. Third, shocks substantially re- duce traction during oscillations. Finally, we demonstrate that shock is strongly correlated with speed and, independently, with subjectively difficult terrain. That is, minimizing shock implies slowing on challenging roads when necessary - a cru- cial behavior to mitigate risk to the vehicle. Our algorithm uses the linear relationship between shock and speed which we derive analytically. The algorithm has three states. First, the vehicle drives at the maximum allowed speed until a shock threshold is exceeded. Second, the vehicle slows immediately to bring itself within the shock threshold using the relationship between speed and shock. Finally, the

Download full-text

Full-text

Available from: Gabriel Hoffmann
  • Source
    • "We proposed a method that uses a support vector machine [9] [10]. Stavens et al. focus on assessing the roughness of the terrain instead of grouping the ground surface into classes [11]. There also exist systems that combine vision and vibration sensing [12] [13] [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In outdoor environments, a great variety of ground surfaces exists. To ensure safe navigation, a mobile robot should be able to identify the current ter-rain so that it can adapt its driving style. If the robot navigates in known environ-ments, a terrain classification method can be trained on the expected terrain classes in advance. However, if the robot is to explore previously unseen areas, it may face terrain types that it has not been trained to recognize. In this paper, we present a vibration-based terrain classification system that uses novelty detection based on Gaussian mixture models to detect if the robot traverses an unknown terrain class. If the robot has collected a sufficient number of examples of the unknown class, the new terrain class is added to the classification model online. Our experiments show that the classification performance of the automatically learned model is only slightly worse than the performance of a classifier that knows all classes before-hand.
    Preview · Article · Jan 2008
  • Source
    • "In [20], we suggested an approach that uses Support Vector Machines (SVM) for classification. Stavens et al. presented an approach for vehicles driving up to 35 mph [17]. However, they focused on assessing the roughness of the terrain to adapt the velocity, and not on grouping the ground surface into classes. "

    Preview · Conference Paper · Jan 2007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When an outdoor mobile robot traverses different types of ground surfaces, different types of vibrations are induced in the body of the robot. These vibrations can be used to learn a discrimination between different surfaces and to classify the current terrain. Recently, we presented a method that uses Support Vector Machines for classification, and we showed results on data collected with a hand-pulled cart. In this paper, we show that our approach also works well on an outdoor robot. Furthermore, we more closely investigate in which direction the vibration should be measured. Finally, we present a simple but effective method to improve the classification by combining measurements taken in multiple directions.
    Preview · Conference Paper · Jan 2007
Show more