Conference Paper

Landmarks Selection Algorithm for Virtual Coordinates Routing

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

In this paper, we propose a distributed, self-organized landmarks selection algorithm which ensures different patterns of landmarks spread throughout deployment area of a wireless sensor network. The algorithm is highly scalable through decentralized implementation with low time and memory complexity. The proposed technique represents an optimal complexity algorithm for virtual coordinates routing protocols in large-scale wireless sensor networks, and our simulations show that it improves significantly virtual coordinates routing protocols performance, preserving simplicity and high scalability of this routing method.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Conference Paper
Full-text available
In this paper we consider the problem of constructing a coordinate system in a sensor network where location information is not available. To this purpose we introduce the virtual coordinate assignment protocol (VCap) which defines a virtual coordinate system based on hop distances. As compared to other approaches, VCap is simple and have very little requirements in terms of communication and memory overheads. We compare by simulations the performances of greedy routing using our virtual coordinate system with the one using the physical coordinates. Results show that the virtual coordinate system can be used to efficiently support geographic routing.
Article
Full-text available
Geographic routing provides relatively good performance at a much lower overhead than conventional routing protocols such as AODV. However, the performance of these protocols is impacted by physical voids, and localization errors. Accordingly, virtual coordinate systems (VCS) were proposed as an alternative approach that is resilient to localization errors and that naturally routes around physical voids. However, we show that VCS is vulnerable to different forms of the void problem and the performance of greedy routing on VCS is worse than that of geographic forwarding. We show that these anomalies are due to the integral nature of VCS, which causes quantization noise in the estimate of connectivity and node location. We propose an aligned virtual coordinate system (AVCS) on which the greedy routing success can be significantly improved. With our approach, and for the first time, we show that greedy routing on VCS out-performs that on physical coordinate systems even in the absence of localization errors. We compare AVCS against some of the most popular geographical routing protocols both on physical coordinate system and the virtual coordinate systems and show that AVCS significantly improves performance over the best known solutions.
Conference Paper
Routing is one of the key challenges in sensor networks that directly affects the information throughput and energy expenditure. Geographic routing is the most scalable routing scheme for statically placed nodes in that it uses only a constant amount of per-node state regardless of network size. The location information needed for this scheme, however, is not easy to compute accurately using current localization algorithms. In this paper, we propose a novel logical coordinate framework that encodes connectivity information for routing purposes without the benefit of geographic knowledge, while retaining the constant-state advantage of geographic routing. In addition to efficiency in the absence of geographic knowledge, our scheme has two important advantages: (i) it improves robustness in the presence of voids compared to other logical coordinate frameworks, and (ii) it allows inferring bounds on route hop count from the logical coordinates of the source and destination nodes, which makes it a candidate for use in soft real-time systems. The scheme is evaluated in simulation demonstrating the advantages of the new protocol.
Conference Paper
We propose a practical and scalable technique for point-to-point routing in wireless sensornets. This method, called Beacon Vector Routing (BVR), assigns coordinates to nodes based on the vector of hop count distances to a small set of beacons, and then defines a distance metric on these coordinates. BVR routes packets greedily, forwarding to the next hop that is the closest (according to this beacon vector distance metric) to the destination. We evaluate this approach through a combination of high-level simulation to investigate scaling and design tradeoffs, and a prototype implementation over real testbeds as a necessary reality check.
Article
In this article, we present logical coordinates based routing (LCR), a novel framework for scalable and location-independent routing in wireless sensor networks. LCR assigns each node a logical coordinate vector, and routes packets following these vectors. We demonstrate that LCR (i) guarantees packet delivery with a high probability, (ii) finds good paths, and (iii) exhibits robust performance in the presence of network voids and node failures. We systematically evaluate the performance of LCR through simulations and compare it with other state-of-the-art protocols. We also propose two extensions of LCR, one for three-dimensional node deployments and the other for unreliable wireless links.
Conference Paper
Routing in mobile ad hoc networks remains as a challenging problem given the limited wireless bandwidth, users' mobility and potentially large scale. Recently, there has been a thrust of research to address these problems, including on-demand routing, geographical routing, virtual coordinates, etc. In this paper, we focus on geographical routing, which was shown to achieve good scalability without flooding, but it usually requires location information and can suffer from the severe dead end problem especially in sparse networks. Specifically, we propose a new hop ID based routing protocol, which does not require any location information, yet achieves comparable performance with the shortest path routing. In addition, we design efficient algorithms for setting up the system and adapt to the node mobility quickly, and can effectively route out of dead ends. The extensive analysis and simulation show that the hop ID based routing achieves efficient routing for mobile ad hoc networks with various density, irregular topologies and obstacles.
Article
We present Greedy Perimeter Stateless Routing (GPSR), a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions. GPSR makes greedy forwarding decisions using only information about a router's immediate neighbors in the network topology. When a packet reaches a region where greedy forwarding is impossible, the algorithm recovers by routing around the perimeter of the region. By keeping state only about the local topology, GPSR scales better in per-router state than shortest-path and ad-hoc routing protocols as the number of network destinations increases. Under mobility's frequent topology changes, GPSR can use local topology information to find correct new routes quickly. We describe the GPSR protocol, and use extensive simulation of mobile wireless networks to compare its performance with that of Dynamic Source Routing. Our simulations demonstrate GPSR's scalability on densely deployed wir...