Conference Paper

A Novel Generalized-Comparison-Based Self-Diagnosis Algorithm for Multiprocessor and Multicomputer Systems Using a Multilayered Neural Network

DOI: 10.1109/CSE.2010.68 Conference: 13th IEEE International Conference on Computational Science and Engineering, CSE 2010, China, Hong Kong, December 11-13, 2010
Source: DBLP


We consider the system-level self-diagnosis of multiprocessor and multicomputer systems under the generalized comparison model (GCM). In this diagnosis model, a set of tasks is assigned to pairs of nodes and their outcomes are compared by neighboring nodes. The collections of all comparison outcomes, agreements and disagreements among the nodes, are used to identify the set of faulty nodes. We consider only permanent faults in t-diagnosable systems that guarantee that each node can be correctly identified as fault-free or faulty based on a valid collection of comparison results (the syndrome) and assuming that the number of faulty nodes does not exceed a given bound t. Given that comparisons are performed by the nodes themselves, faulty nodes can incorrectly claim that fault-free nodes are faulty or that faulty nodes are fault-free. In this paper, we introduce a novel neural networks-based diagnosis approach to solve this fault identification problem. The new diagnosis approach exploits the off-line learning phase of neural networks to speed up the diagnosis algorithm. We have implemented and evaluated the new diagnosis approach using randomly generated diagnosable systems. The new neural-network-based self-diagnosis approach correctly identified most of the faulty situations forming hence a viable addition or alternative to solve the GCM-based fault identification problem.

6 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: A modified Hop field neural network is introduced to solve the comparison-based system-level fault diagnosis problem when only partial syndromes are available. We use the generalized comparison model, where a set of tasks is assigned to pairs of nodes and their outcomes are compared by neighboring nodes. To identify the set of permanently faulty nodes, the collections of all agreements and disagreements, i.e., the comparison outcomes, are used. First, we show that the new diagnosis approach works correctly when t-diagnosable systems are considered. Then, we show the main contribution of this new diagnosis approach which is its capability of correctly identifying the set of faulty nodes when not all the comparison outcomes are available to the diagnosis algorithm at the beginning of the diagnosis phase, i.e., partial syndromes. The simulation results indicate that the modified Hop field neural network-based fault identification algorithm provides an effective solution to the system-level fault diagnosis problem even when partial syndromes are available.
    No preview · Article · Jan 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traffic light has played a vital role in decongestion of traffic flow since its inception in 1864. Since then, volumes of researches have been done while others are still on going on how to improve the performance of traffic light systems so as to meet up with the demand of ever increasing road users especially in urban cities. This work observed that little has been done in the domain of Predictive Maintenance (PM) vis-a-vis traffic light systems. Anexisting approach of Breakdown Maintenance Approach (BMA) which has been adopted in literature is not satisfactory as the traffic light is not supposed to go off especially during the busy hours. This paper presents a self diagnostic system that monitors the quality of light produced by the light emitting element of traffic light system, and alerts the maintenance operators via Short Message Service (SMS) to change the lamp head before it fails totally. Our overall methodology is encapsulated in the body of the work.
    Full-text · Conference Paper · Nov 2013