The growing adoption of supercomputers across various scientific disciplines, particularly by researchers without a background in computer science, has intensified the demand for parallel applications. These applications are typically developed using a combination of programming models within languages such as C, C++, and Fortran. However, modern multi-core processors and accelerators necessitate fine-grained control to achieve effective parallelism, complicating the development process. To address this, developers commonly utilize high-level programming models such as Open Multi-Processing (OpenMP), Open Accelerators (OpenACCs), Message Passing Interface (MPI), and Compute Unified Device Architecture (CUDA). These models may be used independently or combined into dual-or tri-model applications to leverage their complementary strengths. However, integrating multiple models introduces subtle and difficult-to-detect runtime errors such as data races, deadlocks, and livelocks that often elude conventional compilers. This complexity is exacerbated in applications that simultaneously incorporate MPI, OpenMP, and CUDA, where the origin of runtime errors, whether from individual models , user logic, or their interactions, becomes ambiguous. Moreover, existing tools are inadequate for detecting such errors in tri-model applications, leaving a critical gap in development support. To address this gap, the present study introduces a static analysis tool designed specifically for tri-model applications combining MPI, OpenMP, and CUDA in C++-based environments. The tool analyzes source code to identify both actual and potential runtime errors prior to execution. Central to this approach is the introduction of error dependency graphs, a novel mechanism for systematically representing and analyzing error correlations in hybrid applications. By offering both error classification and comprehensive static detection, the proposed tool enhances error visibility and reduces manual testing effort. This contributes significantly to the development of more robust parallel applications for high-performance computing (HPC) and future exascale systems. Citation: Altalhi, S.M.; Eassa, F.E.; Sharaf, S.A.; Alghamdi, A.M.; Almarhabi, K.A.; Khalid, R.A.B. Error Classification and Static Detection Methods in Tri-Programming Models: MPI, OpenMP, and CUDA. Computers 2025, 14, 164. https://doi.