Content uploaded by Steven T. Dougherty
Author content
All content in this area was uploaded by Steven T. Dougherty on Dec 26, 2014
Content may be subject to copyright.
History
◮Z4
(1994) A.Hammons,P.V.Kumar,A.R.Calderbank, N.J.A
Calderbank,P.Sole
(1996) V.Pless,Z.Qian
(1997) V.Pless,P.Sole,Z.Qian
(2001) J.Wolfmann
(2003)T.Abualrub,Oehmke
(2006) S.Dougherty,S.Ling
(2003) T.Blackford
(2010) X.Kai,S.Zhu
◮Zpm
(1995)A.R.Calderbank, N.J.A Sloane
(2002)S.Ling,T.Blackford
(1997)P.Kanwar,S.R.Lopez Permouth
(2007)S.Dougherty,Y.H.Park
History
◮F2[u]/ < u2>, u2= 0
(1998) A.Bonnecaze,P.Udaya
◮Galois Ring
(1999) Wan
(2008) H.M.Kiah,K.H.Leung,S.Ling
(2009)R.Sobrani,M.Esmaeili
◮Finite Chain Ring
(2000)G.Norton,A.Salagean
(2004)H.Dihn,S.Lopez-Permouth
(2008)J.Qian,W.Ma,X.Wang
◮Fp+...+uk−1Fp
(2004)J.F.Qian,L.N.Zhang,Z.X.Zhu
(2011)M.Han,Y.Ye,S.Zhu,C.Xu,B.Dou
◮Z2+uZ2,Z2+uZ2+u2Z2
(2007)T.Abualrub,I.Siap
◮F2[u]/ < u2−1>, u2= 1
(2009) I.Siap,T.Abualrub
History
◮Z2+...+uk−1Z2
(2010)M.Al-Ashker,M.Hammoudeh
◮F2[v]/ < v2−v>, v2=v
(2010)S.Zhu,Y.Wang,M.Shi
◮F2[u,v]/ < u2,v2,uv −vu >, u2= 0,v2= 0,uv =vu
(2010)B.Yildiz,S.Karadeniz
◮F2[u1,u2,...,un]/ < u2
i,uiuj−ujui>, u2
i= 0,uiuj=ujui
(2011)S.Dougherty,B.Yildiz,S.Karadeniz
◮Fq+uFq+vFq+uvFq
(2011)X.U.Xiaofang,L.Xiusheng
◮Formal Power Series
(2011) S.Dougherty,L.Hongwei
◮M2(F2)
(2012)A.Alamadhi,H.Sboui,P.Sole,O.Yemen
History
(2010)S.Zhu,Y.Wang,M.Shi
◮R=F2[v]/ < v2−v>, v2=v
◮π:R→F2
2
(a+vb)7→ (a,a+b)
◮C1={x∈Fn
2|x,y∈Fn
2|x+vy ∈C}
C2={x+y∈Fn
2|y∈Fn
2|x+vy ∈C}
◮C= (1 + v)C1⊕vC2
Ccyclic ⇐⇒ ?C1,C2
C⊥= ?
Ccyclic ⇒C=? g1(x),g2(x)
Theorem
For any cyclic code C over R, there is a unique polynomial g (x)
such that C =<g(x)>and g (x)|xn−1where
g(x) = (1 + v)g1(x) + g2(x).
◮Ccyclic ⇒C⊥= ?
The Ring Akand the Gray Map on Ak
For integers k≥1, Ak=F2[v1,v2,...,vk]/hv2
i−vi,vivj−vjvii
where v2
i=vi,vivj=vjvi,i= 1,...,k,j= 1,...,k.
Ak={PB∈PkαBvB|αB∈F2,vB=Qi∈Bvi,B⊆ {1,2,...,k}}
Example
For k = 1, A1=F2[v1]/hv2
1−v1iwhere v2
1=v1.
For k = 2, A2=F2[v1,v2]/hv2
1−v1,v2
2−v2,v1v2−v2v1iwhere
v2
1=v1,v2
2=v2,v1v2=v2v1.
The Ring Akand the Gray Map on Ak
For integers k≥1, Ak=F2[v1,v2,...,vk]/hv2
i−vi,vivj−vjvii
where v2
i=vi,vivj=vjvi,i= 1,...,k,j= 1,...,k.
Ak={PB∈PkαBvB|αB∈F2,vB=Qi∈Bvi,B⊆ {1,2,...,k}}
Example
For k = 1, A1=F2[v1]/hv2
1−v1iwhere v2
1=v1.
For k = 2, A2=F2[v1,v2]/hv2
1−v1,v2
2−v2,v1v2−v2v1iwhere
v2
1=v1,v2
2=v2,v1v2=v2v1.
Lemma
The ring Akhas characteristic 2 and cardinality 22k.
Lemma
The only unit in the ring Akis 1.
The Ring Akand the Gray Map on Ak
Theorem
The ideal hw1,w2,...,wki, where wi∈ {vi,1 + vi}for each
i= 1,2,...,k, is a maximal ideal of cardinality 22k−1.
Lemma
Let mibe a maximal ideal as above. Then there are 2ksuch ideals
and me
i=mifor all i and e ≥1.
Theorem
The ring Akis isomorphic via the Chinese Remainder Theorem to
F2k
2.Consequently, the ring Akis a principal ideal ring.
The Cyclic codes over Ak
Definition
A subset C of An
kis called a cyclic code of length n if C satisfies
the following conditions:
* C is a submodule of An
k
* If every c = (c0,...,cn−1)∈C then
σ(c) = (cn−1,c0. . . , cn−2)∈C
Theorem
Let C be a code over Akand let Cibe the binary codes given
before. The code C is cyclic if and only if Ciis a cyclic code for all
i.
The Cyclic codes over Ak
Definition
A subset C of An
kis called a cyclic code of length n if C satisfies
the following conditions:
* C is a submodule of An
k
* If every c = (c0,...,cn−1)∈C then
σ(c) = (cn−1,c0. . . , cn−2)∈C
Theorem
Let C be a code over Akand let Cibe the binary codes given
before. The code C is cyclic if and only if Ciis a cyclic code for all
i.
Corollary
If a code C over Akis cyclic then C ⊥is cyclic.
The Gray image of the Self Dual Cyclic Codes over Ak
Definition
Let a∈F2kn
2with a= (a0,...,a2kn−1) = (a(0)|a(1) |...|a(2k−1)),
a(i)∈Fn
2for i = 0,1,...,2k−1.Let σ⊗2kbe the map from F2kn
2
to F2kn
2given by σ⊗2k(a) = (σ(a(0))|. . . |σ(a(2k−1))) where σis the
usual shift (c0,...,cn−1)7→ (cn−1,c0, . . . , cn−2)on Fn
2.
A code C of length 2kn over F2is said to be quasi-cyclic of index
2kif σ⊗2k(C) = C .
The Gray image of the Self Dual Cyclic Codes over Ak
Definition
Let a∈F2kn
2with a= (a0,...,a2kn−1) = (a(0)|a(1) |...|a(2k−1)),
a(i)∈Fn
2for i = 0,1,...,2k−1.Let σ⊗2kbe the map from F2kn
2
to F2kn
2given by σ⊗2k(a) = (σ(a(0))|. . . |σ(a(2k−1))) where σis the
usual shift (c0,...,cn−1)7→ (cn−1,c0, . . . , cn−2)on Fn
2.
A code C of length 2kn over F2is said to be quasi-cyclic of index
2kif σ⊗2k(C) = C .
Corollary
The image of a cyclic self dual code of length n over Akis a length
2kn self dual quasi-cyclic code of index 2k.
Bibliography
◮C. Bachoc,Application of Coding Theory to the Construction
of Modular Lattices,J.Combin Theory Ser.A78,92-119,1997
◮Y.Cengellenmis,A.Dertli,S.Dougherty,Cyclic and Skew Cyclic
Codes over an Infinite Family of Rings with Gray Map,in
submission
◮Y.Cengellenmis,On the Cylic codes over
F3+vF3,International Journal of Algebra,4,no 6,253-259,2010
◮N.J.A Sloane,J.G.Thompson, Cyclic Self Dual Codes,IEEE
Trans.Information Theory,IT-29,364-366,1983
◮S.Zhu,Y.Wang,M.J.Shi,Cyclic Codes over
F2+vF2,ISIT,Korea,2009