A Reinforcement Learning Approach Based on the Fuzzy Min-Max Neural Network.

University of Ioannina
Neural Processing Letters (Impact Factor: 1.45). 12/1996; 4(3):167-172. DOI: 10.1007/BF00426025
Source: DBLP


The fuzzy min-max neural network constitutes a neural architecture that is based on hyperbox fuzzy sets and can be incrementally trained by appropriately adjusting the number of hyperboxes and their corresponding volumes. Two versions have been proposed: for supervised and unsupervised learning. In this paper a modified approach is presented that is appropriate for reinforcement learning problems with discrete action space and is applied to the difficult task of autonomous vehicle navigation when no a priori knowledge of the enivronment is available. Experimental results indicate that the proposed reinforcement learning network exhibits superior learning behavior compared to conventional reinforcement schemes.

1 Follower
6 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fuzzy min-max neural network constitutes a neural architecture that is based on hyperbox fuzzy sets and can be incrementally trained by appropriately adjusting the number of hyperboxes and their corresponding volumes. An extension to this network has been proposed recently, that is based on the notion of random hyperboxes and is suitable for reinforcement learning problems with discrete action space. In this work, we elaborate further on the random hyperbox idea and propose the stochastic fuzzy min-max neural network, where each hyperbox is associated with a stochastic learning automaton. Experimental results using the pole balancing problem indicate that the employment of this model as an action selection network in reinforcement learning schemes leads to superior learning performance compared with the traditional approach where the multilayer perceptron is employed. Keywords: Fuzzy min-max neural network, reinforcement learning, stochastic automaton, pole balancing pro...
    Full-text · Article · Sep 2000 · Neural Processing Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: An enhanced fuzzy min-max (EFMM) network is proposed for pattern classification in this paper. The aim is to overcome a number of limitations of the original fuzzy min-max (FMM) network and improve its classification performance. The key contributions are three heuristic rules to enhance the learning algorithm of FMM. First, a new hyperbox expansion rule to eliminate the overlapping problem during the hyperbox expansion process is suggested. Second, the existing hyperbox overlap test rule is extended to discover other possible overlapping cases. Third, a new hyperbox contraction rule to resolve possible overlapping cases is provided. Efficacy of EFMM is evaluated using benchmark data sets and a real medical diagnosis task. The results are better than those from various FMM-based models, support vector machine-based, Bayesian-based, decision tree-based, fuzzy-based, and neural-based classifiers. The empirical findings show that the newly introduced rules are able to realize EFMM as a useful model for undertaking pattern classification problems.
    No preview · Article · Mar 2015 · IEEE transactions on neural networks and learning systems
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A two-stage hybrid model for data classification and rule extraction is proposed. The first stage uses a Fuzzy ARTMAP (FAM) classifier with Q-learning (known as QFAM) for incremental learning of data samples, while the second stage uses a Genetic Algorithm (GA) for rule extraction from QFAM. Given a new data sample, the resulting hybrid model, known as QFAM-GA, is able to provide prediction pertaining to the target class of the data sample as well as to give a fuzzy if-then rule to explain the prediction. To reduce the network complexity, a pruning scheme using Q-values is applied to reduce the number of prototypes generated by QFAM. A ‘don't care’ technique is employed to minimize the number of input features using the GA. A number of benchmark problems are used to evaluate the effectiveness of QFAM-GA in terms of test accuracy, noise tolerance, model complexity (number of rules and total rule length). The results are comparable, if not better, than many other models reported in the literature. The main significance of this research is a usable and useful intelligent model (i.e., QFAM-GA) for data classification in noisy conditions with the capability of yielding a set of explanatory rules with minimum antecedents. In addition, QFAM-GA is able to maximize accuracy and minimize model complexity simultaneously. The empirical outcome positively demonstrate the potential impact of QFAM-GA in the practical environment, i.e., providing an accurate prediction with a concise justification pertaining to the prediction to the domain users, therefore allowing domain users to adopt QFAM-GA as a useful decision support tool in assisting their decision-making processes.
    Full-text · Article · Dec 2015 · Expert Systems with Applications