ArticlePDF Available

Special issue on modelling of complex systems by cellular automata: Guest editors' introduction

  • Independent Researcher
A preview of the PDF is not available
Full-text available
>>> The best seller in the field - over 30k ebooks sold as 2018. <<< From the Back Cover: Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on theory and applications, and a smaller part on software. The theory part contains fundamental chapters on how to design and/or apply CA for many different areas. In the applications part a number of representative examples of really using CA in a broad range of disciplines is provided - this part will give the reader a good idea of the real strength of this kind of modeling as well as the incentive to apply CA in their own field of study. Download or buy at Springer:
Full-text available
..... The INTRODUCTION into the one of the best selling book in the field (over 30k ebooks sold) ..... Abstract: Since the sixteenth century there have been two main paradigms in the methodology of doing science. The first one is referred to as “the experimental” paradigm. During an experiment we observe, measure, and quantify natural phenomena in order to solve a specific problem, answer a question, or to decide whether a hypothesis is true or false. The second paradigm is known as “the theoretical” paradigm. A theory is generally understood as a fundamental, for instance logical and/or mathematical explanation of an observed natural phenomenon. Theory can be supported or falsified through experimentation. Link to the online version of the book:
ResearchGate has not been able to resolve any references for this publication.