Article

Mutually Exclusive Spiky Pattern and Segmentation Modeled by the Five-Component Meinhardt–Gierer System

SIAM Journal on Applied Mathematics (Impact Factor: 1.43). 01/2008; 69(2):419-452. DOI: 10.1137/060673138
Source: DBLP

ABSTRACT

We consider the five-component Meinhardt-Gierer model for mutually exclusive patterns and segmentation, which was proposed in [H. Meinhardt and A. Gierer, J. Theoret. Biol., 85 (1980), pp. 429-450]. We prove rigorous results on the existence and stability of mutually exclusive spikes which are located in different positions for the two activators. Sufficient conditions for existence and stability are derived, which depend in particular on the relative size of the various diffusion constants. Our main analytical methods are the Liapunov-Schmidt reduction and nonlocal eigenvalue problems. The analytical results are confirmed by numerical simulations.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study a cooperative consumer chain model which consists of one producer and two consumers. It is an extension of the Schnakenberg model suggested in Gierer and Meinhardt [Kybernetik (Berlin), 12:30-39, 1972] and Schnakenberg (J Theor Biol, 81:389-400, 1979) for which there is only one producer and one consumer. In this consumer chain model there is a middle component which plays a hybrid role: it acts both as consumer and as producer. It is assumed that the producer diffuses much faster than the first consumer and the first consumer much faster than the second consumer. The system also serves as a model for a sequence of irreversible autocatalytic reactions in a container which is in contact with a well-stirred reservoir. In the small diffusion limit we construct cluster solutions in an interval which have the following properties: The spatial profile of the third component is a spike. The profile for the middle component is that of two partial spikes connected by a thin transition layer. The first component in leading order is given by a Green's function. In this profile multiple scales are involved: The spikes for the middle component are on the small scale, the spike for the third on the very small scale, the width of the transition layer for the middle component is between the small and the very small scale. The first component acts on the large scale. To the best of our knowledge, this type of spiky pattern has never before been studied rigorously. It is shown that, if the feedrates are small enough, there exist two such patterns which differ by their amplitudes.We also study the stability properties of these cluster solutions. We use a rigorous analysis to investigate the linearized operator around cluster solutions which is based on nonlocal eigenvalue problems and rigorous asymptotic analysis. The following result is established: If the time-relaxation constants are small enough, one cluster solution is stable and the other one is unstable. The instability arises through large eigenvalues of order [Formula: see text]. Further, there are small eigenvalues of order [Formula: see text] which do not cause any instabilities. Our approach requires some new ideas: (i) The analysis of the large eigenvalues of order [Formula: see text] leads to a novel system of nonlocal eigenvalue problems with inhomogeneous Robin boundary conditions whose stability properties have been investigated rigorously. (ii) The analysis of the small eigenvalues of order [Formula: see text] needs a careful study of the interaction of two small length scales and is based on a suitable inner/outer expansion with rigorous error analysis. It is found that the order of these small eigenvalues is given by the smallest diffusion constant [Formula: see text].
    Preview · Article · Nov 2012 · Journal of Mathematical Biology

  • No preview · Article · Jan 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study a three-component consumer chain model which is based on Schnakenberg type kinetics. In this model there is one consumer feeding on the producer and a second consumer feeding on the first consumer. This means that the first consumer (central component) plays a hybrid role: it acts both as consumer and producer. The model is an extension of the Schnakenberg model suggested in Gierer and Meinhardt (Kybernetik 12:30-39, 1972) and Schnakenberg (J Theoret Biol 81:389-400, 1979) for which there is only one producer and one consumer. It is assumed that both the producer and second consumer diffuse much faster than the central component. We construct single spike solutions on an interval for which the profile of the first consumer is that of a spike. The profiles of the producer and the second consumer only vary on a much larger spatial scale due to faster diffusion of these components. It is shown that there exist two different single spike solutions if the feed rates are small enough: a large-amplitude and a small-amplitude spike. We study the stability properties of these solutions in terms of the system parameters. We use a rigorous analysis for the linearized operator around single spike solutions based on nonlocal eigenvalue problems. The following result is established: If the time-relaxation constants for both producer and second consumer vanish, the large-amplitude spike solution is stable and the small-amplitude spike solution is unstable. We also derive results on the stability of solutions when these two time-relaxation constants are small. We show a new effect: if the time-relaxation constant of the second consumer is very small, the large-amplitude spike solution becomes unstable. To the best of our knowledge this phenomenon has not been observed before for the stability of spike patterns. It seems that this behavior is not possible for two-component reaction-diffusion systems but that at least three components are required. Our main motivation to study this system is mathematical since the novel interaction of a spike in the central component with two other components results in new types of conditions for the existence and stability of a spike. This model is realistic if several assumptions are made: (i) cooperation of consumers is prevalent in the system, (ii) the producer and the second consumer diffuse much faster than the first consumer, and (iii) there is practically an unlimited pool of producer. The first assumption has been proven to be correct in many types of consumer groups or populations, the second assumption occurs if the central component has a much smaller mobility than the other two, the third assumption is realistic if the consumers do not feel the impact of the limited amount of producer due to its large quantity. This chain model plays a role in population biology, where consumer and producer are often called predator and prey. This system can also be used as a model for a sequence of irreversible autocatalytic reactions in a container which is in contact with a well-stirred reservoir.
    Preview · Article · Feb 2015 · Journal of Dynamics and Differential Equations