Nitric oxide is a cytochrome P-450 type hemoprotein

ArticleinBiochemistry 31(29):6627-31 · August 1992with7 Reads
Impact Factor: 3.02 · DOI: 10.1021/bi00144a001 · Source: PubMed


    Nitric oxide has emerged as an important mammalian metabolic intermediate involved in critical physiological functions such as vasodilation, neuronal transmission, and cytostasis. Nitric oxide synthase (NOS) catalyzes the five-electron oxidation of L-arginine to citrulline and nitric oxide. Cosubstrates for the reaction include molecular oxygen and NADPH. In addition, there is a requirement for tetrahydrobiopterin. NOS also contains the coenzymes FAD and FMN and demonstrates significant amino acid sequence homology to NADPH-cytochrome P-450 reductase. Herein we report the identification of the inducible macrophage NOS as a cytochrome P-450 type hemoprotein. The pyridine hemochrome assay showed that the NOS contained a bound protoporphyrin IX heme. The reduced carbon monoxide binding spectrum shows an absorption maximum at 447 nm indicative of a cytochrome P-450 hemoprotein. A mixture of carbon monoxide and oxygen (80%/20%) potently inhibited the reaction (73-79%), showing that the heme functions directly in the oxidative conversion of L-arginine to nitric oxide and citrulline. Additionally, partially purified NOS from rat cerebellum was inhibited by CO, suggesting that this isoform may also contain a P-450-type heme. NOS is the first example of a soluble cytochrome P-450 in eukaryotes. In addition, the presence of FAD and FMN indicates that this is the first catalytically self-sufficient mammalian P-450 enzyme, containing both a reductase and a heme domain on the same polypeptide.