Article

A set of near-isogenic lines for blast resistance genes with an Indica-type elite rice (Oryza sativa L.) genetic background

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

A set of near-isogenic lines for blast resistance genes was developed by using an Indica-type elite rice variety, IR49830-7-1-2-2, suitable for the rainfed lowland conditions in the tropics, as a genetic background. Initially, we revealed that IR49830-7-1-2-2 harbors five blast resistance genes – Pia, Pib, Pik-s, Pita, and Pi11(t) – by using a differential system involving 19 selected standard blast isolates from the Philippines. Based on this result, we developed nine near-isogenic lines (NILs) targeting eight resistance genes – Pik, Pi7(t), Pi3, Pi5, Pita-2, Piz-5, Pish, and Pi9 – by recurrent backcrossing. The introgression of each resistance gene in the NILs was confirmed by reaction patterns to the blast isolates, allelism tests, and DNA marker analysis. In addition, a genome-wide DNA marker survey revealed that most of the chromosome regions in each NIL were of the IR49830-7-1-2-2 type. The agricultural characteristics of most of the developed NILs were almost the same as those of IR49830-7-1-2-2. Moreover, with one exception, they showed submergence tolerance similar to IR49830-7-1-2-2. The developed NILs could be used as a multiline variety suitable for the rainfed lowland in the tropics.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... µg/g). This could be due to the differential interaction of the introgressed genome with the genes involved in carotenoid biosynthesis pathway and the genetic background of the recurrent parent (Koide et al., 2011;Singh et al., 2012). This is further supported by the fact that although all the CIMMYT-HarvestPlus donors used in the present investigation possessed the same favourable allele of the crtRB1 gene, they varied in kernel β-carotene from 11.3-17.8 ...
... µg/g). This variation may be due to the differential interaction of the introgressed genome with the genes involved in carotenoid biosynthesis pathway and the genetic background of the recurrent parent (Koide et al., 2011;Singh et al., 2012). This is further supported by the fact that although all the CIMMYT-HarvestPlus donors used in the present investigation possessed the same favourable allele of the crtRB1 gene, they 56 varied in kernel β-carotene from 11.3-17.8 ...
Thesis
Full-text available
Morphological and biochemical characterization of crtRB1 introgressed MAS derived β-carotene rich inbreds in maize (Zea mays L.)
... Pi9 pro- vides high and broad-spectrum resistance to 43 M. oryzae isolates collected from 13 countries ( Liu et al. 2002). Pi9 has been deployed in rice breeding program ( Koide et al. 2011;Luo and Yin 2013;Khanna et al. 2015;Ni et al. 2015;Luo et al. 2016). ...
Article
Full-text available
Rice (Oryza sativa L.) is the staple food crop for more than half of the world’s population. The development of hybrid rice is a practical approach to increase rice production. However, rice production was frequently affected by biotic and abiotic stresses. Rice blast and bacterial blight are two major diseases in rice growing regions. Rice plantation is also frequently affected by short-term submergence or seasonal floods in wet seasons and drought in dry seasons. The utilization of natural disease resistance (R) genes and stress tolerance genes in rice breeding is the most economic and efficient way to combat or adapt to these biotic and abiotic stresses. Rice cultivar 9311 is widely planted rice variety, either as inbred rice or the paternal line of two-line hybrid rice. Here, we report the pyramiding of rice blast R gene Pi9, bacterial blight R genes Xa21 and Xa27, and submergence tolerance gene Sub1A in 9311 genetic background through backcrossing and marker-assisted selection. The improved rice line, designated as 49311, theoretically possesses 99.2% genetic background of 9311. 49311 and its hybrid rice, GZ63S/49311, conferred disease resistance to rice blast and bacterial blight and showed tolerance to submergence for over 18 days without significant loss of viability. 49311 and its hybrids had similar agronomic traits and grain quality to 9311 and the control hybrid rice, respectively. The development of 49311 provides an improved paternal line for two-line hybrid rice production with disease resistance to rice blast and bacterial blight and tolerance to submergence.
Article
Full-text available
With the changing climatic conditions and reducing labor-water availability, the potential contribution of aerobic rice varieties and cultivation system to develop a sustainable rice based agri-food system has never been more important than today. Keeping in mind the goal of identifying high-yielding aerobic rice varieties for wider adaptation, a set of aerobic rice breeding lines were developed and evaluated for grain yield, plant height, and days to 50% flowering in 23 experiments conducted across different location in Philippines, India, Bangladesh, Nepal, and Lao-PDR between 2014 and 2017 in both wet and dry seasons. The heritability for grain yield ranged from 0.52 to 0.90. The season-wise two-stage analysis indicated significant genotype x location interaction for yield under aerobic conditions in both wet and dry seasons. The genotype × season × location interaction for yield was non-significant in both seasons indicating that across seasons the genotypes at each location did not show variability in the grain yield performance. Mean grain yield of the studied genotypes across different locations/seasons ranged from 2,085 to 6,433 Kg ha⁻¹. The best-fit model for yield stability with low AIC value (542.6) was AMMI(1) model. The identified stable genotypes; IR 92521-143-2-2-1, IR 97048-10-1-1-3, IR 91326-7-13-1-1, IR 91326-20-2-1-4, and IR 91328-43-6-2-1 may serve as novel breeding material for varietal development under aerobic system of rice cultivation. High yield and stable performance of promising breeding lines may be due to presence of the earlier identified QTLs including grain yield under drought, grain yield under aerobic conditions, nutrient uptake, anaerobic germination, adaptability under direct seeded conditions, and tolerance to biotic stress resistance such as qDTY2.1, qDTY3.1, qDTY12.1, qNR5.1, AG9.1, qEVV9.1, qRHD1.1, qRHD5.1, qRHD8.1 qEMM1.1, qGY6.1, BPH3, BPH17, GM4, xa4, Xa21, Pita, and Pita2. The frequency of xa4 gene was highest followed by qAG9.1, GM4, qDTY3.1, qDTY2.1, qGY6.1, and qDTY12.1.
Article
Full-text available
Short-term submergence of rainfed lowland and deepwater rice (Oryza saliva L.) reduces yields on millions of hectares in South and Southeast Asia. Farmers in these areas lack high-yielding cultivars that are tolerant to submergence at the vegetative stage. The present study was conducted to evaluate the submergence tolerance, yields and agro-nomic characteristics of improved submergence-tolerant rice lines. Experimental lines combining short to intermediate stature (80-115 cm) with tolerance to submergence were developed from tall, low-yielding tolerant cultivars at the International Rice Research Institute Los Banos, Philippines. Lines were selected based on high survival after submergence in concrete tanks and visual evaluation of yield potential in the field. These lines were tested in field and glasshouse tanks for survival after 10 to 13 d of submergence and were evaluated in replicated trials in the dry and wet seasons. Experimental lines selected for submergence tolerance from crosses with tolerant parents showed higher survival than lines not selected for tolerance in the field and glasshouse tests. The most tolerant lines showed low yield potential (£4100 kg ha~'); however, one breeding line with high submer-gence tolerance (IR49830-7-1-2-2) yielded 4880 kg ha-' and was among the highest yielding lines in the trial. This shows that submergence tolerance can be incorporated into improved, high-yielding lines, which can raise productivity in submergence-prone areas. Submergence tolerance may also be useful for systems in which rice is seeded directly into standing water, where deep water during crop establishment has been proposed as a means of suppressing weed growth.
Article
Full-text available
The presence of blast resistance genes in the elite Indica-type rice (Oryza sativa L.) varieties bred at the International Rice Research Institute (IRRI) was estimated based on a differential system using Philippines isolates of the rice blast fungus Pyricularia grisea (Cooke) Sacc., according to the gene-for-gene theory. Based on the presence of the three resistance genes, Pi20, Pita and one of the Pik alleles (other than Pik-s), the 42 varieties were classified into seven groups. A group that did not harbor these three genes contained seven varieties derived from the progenies of the hybrids with IR24 as a parental variety. The largest group harboring Pita consisted of 17 varieties, including IR36 and its sister lines or progenies. The group harboring by Pi20 had seven varieties that included IR8, IR24 and their hybrid progenies. Thus, most of the IRRI varieties were classified into these three groups that included IR8, IR24, IR36 or their hybrid progenies in their pedigree. The presence of a total of seven resistance genes Pib, Pita, Piz-t, Pi20, Pik-s, one of the Pik alleles (other than Pik-s) and one of the two genes, Pii or Pi3, was estimated in these varieties. In some cases, the presence of genes like Pib, Pik-s and Piz-t could not be confirmed due to the masking effect of Pita, Pik allele, or Pi20. The number and kind of blast resistance genes in IRRI varieties were limited compared with previously reported blast resistance genes. Since the presence of Pik-s and another Pik allele was estimated in 17 varieties belonging to five groups, and that of Pib in 38 varieties belonging to four groups, it appeared that these genes were widely distributed in IRRI-bred varieties.
Article
Full-text available
A total of 119 blast (Magnaporthe grisea (Hebert) Barr.) isolates collected from the Philippines, were characterized for their pathogenicities using 19 rice (Oryza sativa L.) differential varieties (DVs) target- ing for 18 resistance genes. These isolates were classified into 31 groups based on the reaction patterns to 9 DVs for targeting 9 resistance genes, Pia, Pib, Pii, Pit, Pita, Pish, Piz-t, Pi3, and Piz-5, at first, and then further divided into 70 pathotypes considering the reaction pattern of the other 9 DVs for the other resistance genes, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pita-2, Piz, Pi1, and Pi20(t). Twenty isolates that have differentiating ability, stable reactions and good sporulating ability were selected. The reactions of these isolates were confirmed using the monogenic lines as a set of DVs for targeting 24 resistance genes, Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p,Pik-s, Pish, Pit, Pita, Pita-2, Piz, Piz-t, Piz-5, Pi1, Pi3, Pi5(t), Pi7(t), Pi9(t), Pi11(t), Pi12(t), Pi19(t), and Pi20(t). Several resistance alleles of Pik locus, Pik, Pik-h, Pik-m, and Pik-p, and Pi1 had the same reaction patterns and could not be differentiated by these selected blast isolates. No avirulent isolate for Pit and Pi19 was found. The three genes, Pish, Piz-5, and Piz, showed a wide spectrum of moderate resistances to these isolates. These findings suggested the existence of a wide variation of blast pathogens in the Philippines. This information on pathogenic- ity of blast isolates from the Philippines will be also useful to understand the differentiation and rela- tionship between blast races and resistance genes. The monogenic lines as the DVs and the selected 20 blast isolates can be used as the first differential system, which can characterize the resistances of rice varieties and pathogenicities of blast isolates in the tropics.
Article
Full-text available
Resistance to blast disease is an important objective of most rice breeding programs. Genetic studies of resistance have been complicated by variability of the pathogen and lack of rice genotypes with single resistance genes. Near-isogenic lines (NILs) with single blast resistance genes were developed by backcrossing four donor cultivars to the recurrent parent CO39. Five pathogen isolates were used to screen the populations during backcrossing. The 22 NILs were classified into six groups by their reaction to a diverse set of blast isolates (...)
Article
Full-text available
In order to enhance the resolution of an existing genetic map of rice, and to obtain a comprehensive picture of marker utility and genomic distribution of microsatellites in this important grain species, rice DNA sequences containing simple sequence repeats (SSRs) were extracted from several small-insert genomic libraries and from the database. One hundred and eighty eight new microsatellite markers were developed and evaluated for allelic diversity. The new simple sequence length polymorphisms (SSLPs) were incorporated into the existing map previously containing 124 SSR loci. The 312 microsatellite markers reported here provide whole-genome coverage with an average density of one SSLP per 6 cM. In this study, 26 SSLP markers were identified in published sequences of known genes, 65 were developed based on partial cDNA sequences available in GenBank, and 97 were isolated from genomic libraries. Microsatellite markers with different SSR motifs are relatively uniformly distributed along rice chromosomes regardless of whether they were derived from genomic clones or cDNA sequences. However, the distribution of polymorphism detected by these markers varies between different regions of the genome.
Article
Full-text available
The Pik-h gene in rice confers resistance to several races of rice blast fungus (Magnaporthe oryzae), and has been classified as a member of the Pik cluster, one of the most resistance (R) gene-dense regions in the rice genome. However, the loss of a key mutant isolate has long made it difficult to differentiate Pik-h from other Pik group genes especially from Pik-m. We identified new natural isolates enabling the differentiation between Pik-h and Pik-m genes, and first confirmed the authenticity of the International Rice Research Institute (IRRI) “monogenic” line IRBLkh-K3, and then fine-mapped the Pik-h gene in the Pik cluster. Using 701 susceptible individuals among 3,060 siblings from a cross of IRBLkh-K3×CO39, the Pik-h region was delimited to 270kb, the narrowest interval among the Pik group genes reported to date, in the cv. Nipponbare genome. Annotation of this genome region first revealed 6 NBS-LRR type R-gene analogs (RGAs), clustered within the central 120kb, as possible counterparts of Pik-h and 6 other Pik group R genes. Interestingly, the Pik-h region and the cluster of RGAs were shown to be located 130kb and 230kb apart from Xa4 and Xa2 bacterial blight resistance genes, respectively, once classified as belonging to the Pik cluster. The closest recombination events were limited to the margins of the Pik-h region, and recombination was suppressed in the core interval with the RGA cluster. This fine-mapping, performed in a short time using an HEGS system, will facilitate utilization of the cluster’s genetic resources and help to elucidate the mechanism of evolution of R-genes. The presence of natural isolates also confirmed that evolution of Pik-h corresponds to pathogen evolution.
Article
Full-text available
R gene-mediated resistance is one of the most effective mechanisms of immunity against pathogens in plants. To date some components that regulate the primary steps of plant immunity have been isolated, however, the molecular dissection of defense signaling downstream of the R proteins remains to be completed. In addition, R genes are known to be highly variable, however, the molecular mechanisms responsible for this variability remain obscure. To identify novel factors required for R gene-mediated resistance in rice, we used rice insertional mutant lines, induced by the endogenous retrotransposon Tos17, in a genetic screening involving the rice blast fungus Magnaporthe oryzae. We inoculated 41,119 mutant lines with the fungus using a high throughput procedure, and identified 86 mutant lines with diminished resistance. A genome analysis revealed that 72 of the 86 lines contained mutations in a gene encoding a nucleotide binding site (NBS) and leucine rich repeat (LRR) domain-containing (NBS-LRR) protein. A genetic complementation analysis and a pathogenesis assay demonstrated that this NBS-LRR gene encodes Pish, which confers resistance against races of M. oryzae containing avrPish. The other 14 lines have intact copies of the Pish gene, suggesting that they may contain mutations in the signaling components downstream of Pish. The genome analysis indicated that Pish and its neighboring three NBS-LRR genes are high similar to one another and are tandemly located. An in silico analysis of a Tos17 flanking sequence database revealed that this region is a "hot spot" for insertion. Intriguingly, the insertion sites are not distributed evenly among these four NBS-LRR genes, despite their similarity at the sequence and expression levels. In this work we isolated the R gene Pish, and identified several other mutants involved in the signal transduction required for Pish-mediated resistance. These results indicate that our genetic approach is efficient and useful for unveiling novel aspects of defense signaling in rice. Furthermore, our data provide experimental evidence that R gene clusters have the potential to be highly preferred targets for transposable element insertions in plant genomes. Based on this finding, a possible mechanism underlying the high variability of R genes is discussed.
Article
Full-text available
In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6) for the tainted lowland rice environments. The main reason for the poor adoption of new cultivars by farmers is the susceptibility to diseases and unacceptable grain qualities. The conventional breeding program also takes at least 15 years from initial crossing to the release of new cultivars. A new breeding strategy can be established to shorten the period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), and early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer genes and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown plant hopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.
Article
Full-text available
Rice blast, caused by the fungus Pyricularia grisea (Cooke) Sacc., is a serious rice (Oryza sativa L.) disease causing considerable economic damage worldwide. DNA markers for rice blast resistance have been developed, but most are not suitable for routine use in a marker-assisted selection breeding program involving large numbers of progeny. After identifying candidate microsatellite markers from public database sources, we have mapped these markers near the blast resistance genes Pi-b, Pi-k, and Pi-ta2 on rice chromosomes 2, 11, and 12, respectively, using segregation information from hundreds of progeny in several crosses. Two microsatellite markers, RM208 and RM224, were found to cosegregate with the Pi-b and Pi-k genes, respectively, while additional microsatellites were found to closely flank these two genes and the Pi-ta2 gene. The new markers are polymorphic in the narrow crosses characteristic of applied breeding programs and appear to be ideally suited for marker assisted selection for blast resistance in rice because of their tight linkage with resistance genes and ease of use through analysis of amplification products. A dominant marker indicating the presence of the Pi-b gene, Pibdom, has also been developed on the basis of the sequence of the cloned Pi-b gene. These markers should facilitate the introgression and pyramiding of these three blast resistance genes into new rice cultivars and elite lines.
Article
Full-text available
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the most devastating diseases of rice. To understand the molecular basis of Pi5-mediated resistance to M. oryzae, we cloned the resistance (R) gene at this locus using a map-based cloning strategy. Genetic and phenotypic analyses of 2014 F2 progeny from a mapping population derived from a cross between IR50, a susceptible rice cultivar, and the RIL260 line carrying Pi5 enabled us to narrow down the Pi5 locus to a 130-kb interval. Sequence analysis of this genomic region identified two candidate genes, Pi5-1 and Pi5-2, which encode proteins carrying three motifs characteristic of R genes: an N-terminal coiled-coil (CC) motif, a nucleotide-binding (NB) domain, and a leucine-rich repeat (LRR) motif. In genetic transformation experiments of a susceptible rice cultivar, neither the Pi5-1 nor the Pi5-2 gene was found to confer resistance to M. oryzae. In contrast, transgenic rice plants expressing both of these genes, generated by crossing transgenic lines carrying each gene individually, conferred Pi5-mediated resistance to M. oryzae. Gene expression analysis revealed that Pi5-1 transcripts accumulate after pathogen challenge, whereas the Pi5-2 gene is constitutively expressed. These results indicate that the presence of these two genes is required for rice Pi5-mediated resistance to M. oryzae.
Article
Full-text available
Submergence is a recurring problem in the rice-producing rainfed lowlands of south and south-east Asia. Developing rice cultivars with tolerance of submergence and with agronomic and quality traits acceptable to farmers is a feasible approach to address this problem. The objectives of this study were to (a) develop mega varieties with Sub1 introgression that are submergence tolerant, (b) assess the performance of Sub1 in different genetic backgrounds, (c) determine the roles of the Sub1A and Sub1C genes in conferring tolerance, and (d) assess the level of tolerance in F(1) hybrids heterozygous for the Sub1A-1-tolerant allele. Tolerant varieties were developed by marker-assisted backcrossing through two or three backcrosses, and their performance was evaluated to determine the effect of Sub1 in different genetic backgrounds. The roles of Sub1A and Sub1C in conferring the tolerant phenotype were further investigated using recombinants identified within the Sub1 gene cluster based on survival and gene expression data. All mega varieties with Sub1 introgression had a significantly higher survival rate than the original parents. An intolerant Sub1C allele combined with the tolerant Sub1A-1 allele did not significantly reduce the level of tolerance, and the Sub1C-1 expression appeared to be independent of the Sub1A allele; however, even when Sub1C-1 expression is completely turned off in the presence of Sub1A-2, plants remained intolerant. Survival rates and Sub1A expression were significantly lower in heterozygotes compared with the homozygous tolerant parent. Sub1 provided a substantial enhancement in the level of tolerance of all the sensitive mega varieties. Sub1A is confirmed as the primary contributor to tolerance, while Sub1C alleles do not seem important. Lack of dominance of Sub1 suggests that the Sub1A-1 allele should be carried by both parents for developing tolerant rice hybrids.
Article
Full-text available
A method is presented for the rapid isolation of high molecular weight plant DNA (50,000 base pairs or more in length) which is free of contaminants which interfere with complete digestion by restriction endonucleases. The procedure yields total cellular DNA (i.e. nuclear, chloroplast, and mitochondrial DNA). The technique is ideal for the rapid isolation of small amounts of DNA from many different species and is also useful for large scale isolations.
Article
Full-text available
A molecular map has been constructed for the rice genome comprised of 726 markers (mainly restriction fragment length polymorphisms; RFLPs). The mapping population was derived from a backcross between cultivated rice, Oryza sativa, and its wild African relative, Oryza longistaminata. The very high level of polymorphism between these species, combined with the use of polymerase chain reaction-amplified cDNA libraries, contributed to mapping efficiency. A subset of the probes used in this study was previously used to construct an RFLP map derived from an inter subspecific cross, providing a basis for comparison of the two maps and of the relative mapping efficiencies in the two crosses. In addition to the previously described PstI genomic rice library, three cDNA libraries from rice (Oryza), oat (Avena) and barley (Hordeum) were used in this mapping project. Levels of polymorphism detected by each and the frequency of identifying heterologous sequences for use in rice mapping are discussed. Though strong reproductive barriers isolate O. sativa from O. longistaminata, the percentage of markers showing distorted segregation in this backcross population was not significantly different than that observed in an intraspecific F2 population previously used for mapping. The map contains 1491 cM with an average interval size of 4.0 cM on the framework map, and 2.0 cM overall. A total of 238 markers from the previously described PstI genomic rice library, 250 markers from a cDNA library of rice (Oryza), 112 cDNA markers from oat (Avena), and 20 cDNA markers from a barley (Hordeum) library, two genomic clones from maize (Zea), 11 microsatellite markers, three telomere markers, eleven isozymes, 26 cloned genes, six RAPD, and 47 mutant phenotypes were used in this mapping project. Applications of a molecular map for plant improvement are discussed.
Article
Full-text available
By combining the amplified fragment length polymorphism (AFLP) technique with selective genotyping, we constructed a linkage map for rice and assigned each linkage group to a corresponding chromosome. The AFLP map, consisting of 202 AFLP markers, was generated from 74 recombinant inbred lines (RIL) which were selected from both extremes of the population (250 lines) with respect to the response to complete submergence. Map length was 1756 cM, with an average interval size of 8.5 cM. To assign linkage groups to chromosomes, we used 50 previously mapped AFLP markers as anchor markers distributed over the 12 chromosomes. Other AFLP markers were then assigned to specific chromosomes based on their linkage to anchor markers. This AFLP map is equivalent to the RFLP/AFLP map constructed previously as the anchors were in the same order in both maps. Furthermore, tests with two restriction fragment length polymorphism (RFLP) markers and two sequence-tagged site (STS) markers showed that they mapped in the expected positions. Using this AFLP map, a major gene for submergence tolerance was localized on chromosome 9. Quantitative trait loci (QTL) associated with submergence tolerance were detected on chromosomes 6, 7, 11, and 12. We conclude that the combination of AFLP mapping and selective genotyping provides a much faster and easier approach to QTL identification than the use of RFLP markers.
Article
Full-text available
The rice blast resistance (R) gene Pi-ta mediates gene-for-gene resistance against strains of the fungus Magnaporthe grisea that express avirulent alleles of AVR-Pita. Using a map-based cloning strategy, we cloned Pi-ta, which is linked to the centromere of chromosome 12. Pi-ta encodes a predicted 928-amino acid cytoplasmic receptor with a centrally localized nucleotide binding site. A single-copy gene, Pi-ta shows low constitutive expression in both resistant and susceptible rice. Susceptible rice varieties contain pi-ta(-) alleles encoding predicted proteins that share a single amino acid difference relative to the Pi-ta resistance protein: serine instead of alanine at position 918. Transient expression in rice cells of a Pi-ta(+) R gene together with AVR-Pita(+) induces a resistance response. No resistance response is induced in transient assays that use a naturally occurring pi-ta(-) allele differing only by the serine at position 918. Rice varieties reported to have the linked Pi-ta(2) gene contain Pi-ta plus at least one other R gene, potentially explaining the broadened resistance spectrum of Pi-ta(2) relative to Pi-ta. Molecular cloning of the AVR-Pita and Pi-ta genes will aid in deployment of R genes for effective genetic control of rice blast disease.
Article
Full-text available
A major quantitative trait locus (QTL) controlling response to photoperiod, Hd1, was identified by means of a map-based cloning strategy. High-resolution mapping using 1505 segregants enabled us to define a genomic region of approximately 12 kb as a candidate for Hd1. Further analysis revealed that the Hd1 QTL corresponds to a gene that is a homolog of CONSTANS in Arabidopsis. Sequencing analysis revealed a 43-bp deletion in the first exon of the photoperiod sensitivity 1 (se1) mutant HS66 and a 433-bp insertion in the intron in mutant HS110. Se1 is allelic to the Hd1 QTL, as determined by analysis of two se1 mutants, HS66 and HS110. Genetic complementation analysis proved the function of the candidate gene. The amount of Hd1 mRNA was not greatly affected by a change in length of the photoperiod. We suggest that Hd1 functions in the promotion of heading under short-day conditions and in inhibition under long-day conditions.
Article
Full-text available
A total of 57.8 Mb of publicly available rice ( Oryza sativa L.) DNA sequence was searched to determine the frequency and distribution of different simple sequence repeats (SSRs) in the genome. SSR loci were categorized into two groups based on the length of the repeat motif. Class I, or hypervariable markers, consisted of SSRs ≥20 bp, and Class II, or potentially variable markers, consisted of SSRs ≥12 bp <20 bp. The occurrence of Class I SSRs in end-sequences of Eco RI- and Hin dIII-digested BAC clones was one SSR per 40 Kb, whereas in continuous genomic sequence (represented by 27 fully sequenced BAC and PAC clones), the frequency was one SSR every 16 kb. Class II SSRs were estimated to occur every 3.7 kb in BAC ends and every 1.9 kb in fully sequenced BAC and PAC clones. GC-rich trinucleotide repeats (TNRs) were most abundant in protein-coding portions of ESTs and in fully sequenced BACs and PACs, whereas AT-rich TNRs showed no such preference, and di- and tetranucleotide repeats were most frequently found in noncoding, intergenic regions of the rice genome. Microsatellites with poly(AT)n repeats represented the most abundant and polymorphic class of SSRs but were frequently associated with the Micropon family of miniature inverted-repeat transposable elements (MITEs) and were difficult to amplify. A set of 200 Class I SSR markers was developed and integrated into the existing microsatellite map of rice, providing immediate links between the genetic, physical, and sequence-based maps. This contribution brings the number of microsatellite markers that have been rigorously evaluated for amplification, map position, and allelic diversity in Oryza spp. to a total of 500. [Clone sequences for 199 markers (RM1–RM88, RM200–RM345) developed in this lab are available as GenBank accessions AF343840 – AF343869 and AF344003 – AF344169 .]
Article
Full-text available
To understand the molecular basis of broad-spectrum resistance to rice blast, fine-scale mapping of the two blast resistance (R) genes, Pi9( t) and Pi2( t), was conducted. These two genes were introgressed from different resistance donors, previously reported to confer resistance to many blast isolates in the Philippines, and were mapped to an approximately 10-cM interval on chromosome 6. To further test their resistance spectrum, 43 blast isolates collected from 13 countries were used to inoculate the Pi2( t) and Pi9( t) plants. Pi9( t)-bearing lines were highly resistant to all isolates tested, and lines carrying Pi2( t) were resistant to 36 isolates, confirming the broad-spectrum resistance of these two genes to diverse blast isolates. Three RAPD markers tightly linked to Pi9( t) were identified using the bulk segregant analysis technique. Twelve positive bacterial artificial chromosome (BAC) clones were identified and a BAC contig covering about 100 kb was constructed when the Pi9( t) BAC library was screened with one of the markers. A high-resolution map of Pi9( t) was constructed using BAC ends. The Pi2( t) gene was tightly linked to all of the Pi9( t) markers in 450 F(2) plants. These data suggest that Pi9( t) and Pi2( t) are either allelic or tightly linked in an approximately 100-kb region. The mapping results for Pi9( t) and Pi2( t) provide essential information for the positional cloning of these two important blast resistance genes in rice.
Article
Full-text available
The usefulness of mixtures (multiline cultivars and cultivar mixtures) for disease management has been well demonstrated for rusts and powdery mildews of small grain crops. Such mixtures are more useful under some epidemiological conditions than under others, and experimental methodology, especially problems of scale, may be crucial in evaluating the potential efficacy of mixtures on disease. There are now examples of mixtures providing both low and high degrees of disease control for a wide range of pathosystems, including crops with large plants, and pathogens that demonstrate low host specificity, or are splash dispersed, soilborne, or insect vectored. Though most analyses of pathogen evolution in mixtures consider static costs of virulence to be the main mechanism countering selection for pathogen complexity, many other potential mechanisms need to be investigated. Agronomic and marketing considerations must be carefully evaluated when implementing mixture approaches to crop management. Practical difficulties associated with mixtures have often been overestimated, however, and mixtures will likely play an increasingly important role as we develop more sustainable agricultural systems.
Article
Full-text available
Appropriate heading date and plant height are prerequisites for attaining the desired yield level in rice breeding programs. In this study, we analyzed the genetic bases of heading date and plant height at both single- locus and two-locus levels, using a population of 240 F(2:3) families derived from a cross between two elite rice lines. Measurements for the traits were obtained over 2 years in replicated field trials. A linkage map was constructed with 151 polymorphic marker loci, based on which interval mapping was performed using Mapmaker/QTL. The analyses detected six QTLs for plant height and six QTLs for heading date; collectively the QTLs for heading date accounted for a much greater amount of phenotypic variation than did the QTLs for plant height. Two-way analyses of variance, with all possible two-locus combinations, detected large numbers (from 101 to 257) of significant digenic interactions in the 2 years for both traits involving markers distributed in the entire genome; 22 and 39 were simultaneously detected in both years for plant height and heading date, respectively. Each of the interactions individually accounted for only a very small portion of the phenotypic variation. The majority of the significant interactions involved marker loci that did not detect significant effects by single-locus analyses, and many of the QTLs detected by single-locus analyses were involved in epistatic interactions. The results clearly demonstrated the importance of epistatic interactions in the genetic bases of heading date and plant height.
Article
Full-text available
Rice double-haploid (DH) lines of an indica and japonica cross were grown at nine different locations across four countries in Asia. Genotype-by-environment (G x E) interaction analysis for 11 growth- and grain yield-related traits in nine locations was estimated by AMMI analysis. Maximum G x E interaction was exhibited for fertility percentage number of spikelets and grain yield. Plant height was least affected by environment, and the AMMI model explained a total of 76.2% of the interaction effect. Mean environment was computed by averaging the nine environments and subsequently analyzed with other environments to map quantitative trait loci (QTL). QTL controlling the 11 traits were detected by interval analysis using mapmaker/qtl. A threshold LOD of >/=3.20 was used to identify significant QTL. A total of 126 QTL were identified for the 11 traits across nine locations. Thirty-four QTL common in more than one environment were identified on ten chromosomes. A maximum of 44 QTL were detected for panicle length, and the maximum number of common QTL were detected for days to heading detected. A single locus for plant height (RZ730-RG810) had QTL common in all ten environments, confirming AMMI results that QTL for plant height were affected the least by environment, indicating the stability of the trait. Two QTL were detected for grain yield and 19 for thousand-grain weight in all DH lines. The number of QTL per trait per location ranged from zero to four. Clustering of the QTL for different traits at the same marker intervals was observed for plant height, panicle number, panicle length and spikelet number suggesting that pleiotropism and or tight linkage of different traits could be the possible reason for the congruence of several QTL. The many QTL detected by the same marker interval across environments indicate that QTL for most traits are stable and not essentially affected by environmental factors.
Article
Full-text available
To understand the types of gene action controlling seven quantitative traits in rice, we carried out quantitative trait locus (QTL) mapping in order to distinguish between the main-effect QTLs (M-QTLs) and digenic epistatic QTLs (E-QTLs) responsible for the trait performance of 254 recombinant inbred lines (RILs) from rice varieties Lemont/Teqing and two backcross hybrid (BCF1) populations derived from these RILs. We identified 44 M-QTL and 95 E-QTL pairs in the RI and BCF1 populations as having significant effects on the mean values and mid-parental heterosis of heading date, plant height, flag leaf length, flag leaf width, panicle length, spikelet number and spikelet fertility. The E-QTLs detected collectively explained a larger portion of the total phenotypic variation than the M-QTLs in both the RI and BCF1 populations. In both BCF1 populations, over-dominant (or under-dominant) loci were more important than additive and complete or partially dominant loci for M-QTLs and E-QTL pairs, thereby supporting prior findings that overdominance resulting from epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice.
Article
Full-text available
To gain an understanding of the molecular basis for resistance to rice blast (Magnaporthe grisea), we have initiated a project to clone Pi5(t), a locus associated with broad-spectrum resistance to diverse blast isolates. AFLP-derived markers linked to Pi5(t)-mediated resistance were isolated using bulked segregant analysis of F(2) populations generated by crossing three recombinant inbred lines (RILs), RIL125, RIL249, and RIL260 with the susceptible line CO39. The most tightly linked AFLP marker, S04G03, was positioned on chromosome 9 of the fingerprint-based physical map of Nipponbare, a well-characterized rice genotype. Flanking BAC-based Nipponbare markers were generated for saturation mapping using four populations, the three initial RILs and an additional one derived from a cross between M202 and RIL260. A BIBAC (binary BAC) library was constructed from RIL260. Using these resources Pi5(t) was mapped to a 170-kb interval, and a contiguous set of BIBAC clones spanning this region was constructed. It had previously been suggested that Pi3(t) and Pi5(t) might be allelic, due to their identical resistance spectrum and tight linkage. We therefore compared genomic regions for lines containing Pi3(t) using the Pi5(t)-linked markers. DNA gel-blot analyses indicated that the region around Pi3(t) is identical to that of Pi5(t), suggesting that Pi3(t) and Pi5(t) are the same resistance gene.
Article
Full-text available
Most Oryza sativa cultivars die within a week of complete submergence--a major constraint to rice production in south and southeast Asia that causes annual losses of over US 1 billion dollars and affects disproportionately the poorest farmers in the world. A few cultivars, such as the O. sativa ssp. indica cultivar FR13A, are highly tolerant and survive up to two weeks of complete submergence owing to a major quantitative trait locus designated Submergence 1 (Sub1) near the centromere of chromosome 9 (refs 3, 4, 5-6). Here we describe the identification of a cluster of three genes at the Sub1 locus, encoding putative ethylene response factors. Two of these genes, Sub1B and Sub1C, are invariably present in the Sub1 region of all rice accessions analysed. In contrast, the presence of Sub1A is variable. A survey identified two alleles within those indica varieties that possess this gene: a tolerance-specific allele named Sub1A-1 and an intolerance-specific allele named Sub1A-2. Overexpression of Sub1A-1 in a submergence-intolerant O. sativa ssp. japonica conferred enhanced tolerance to the plants, downregulation of Sub1C and upregulation of Alcohol dehydrogenase 1 (Adh1), indicating that Sub1A-1 is a primary determinant of submergence tolerance. The FR13A Sub1 locus was introgressed into a widely grown Asian rice cultivar using marker-assisted selection. The new variety maintains the high yield and other agronomic properties of the recurrent parent and is tolerant to submergence. Cultivation of this variety is expected to provide protection against damaging floods and increase crop security for farmers.
Article
Full-text available
The rice blast resistance (R) genes Pi2 and Piz-t confer broad-spectrum resistance against different sets of Magnaporthe grisea isolates. We first identified the Pi2 gene using a map-based cloning strategy. The Pi2 gene is a member of a gene cluster comprising nine gene members (named Nbs1-Pi2 to Nbs9-Pi2) and encodes a protein with a nucleotide-binding site and leucine-rich repeat (LRR) domain. Fine genetic mapping, molecular characterization of the Pi2 susceptible mutants, and complementation tests indicated that Nbs4-Pi2 is the Pi2 gene. The Piz-t gene, a Pi2 allele in the rice cultivar Toride 1, was isolated based on the Pi2 sequence information. Complementation tests confirmed that the family member Nbs4-Piz-t is Piz-t. Sequence comparison revealed that only eight amino-acid changes, which are confined within three consecutive LRR, differentiate Piz-t from Pi2. Of the eight variants, only one locates within the xxLxLxx motif. A reciprocal exchange of the single amino acid between Pi2 and Piz-t did not convert the resistance specificity to each other but, rather, abolished the function of both resistance proteins. These results indicate that the single amino acid in the xxLxLxx motif may be critical for maintaining the recognition surface of Pi2 and Piz-t to their respective avirulence proteins.
Article
Both Pi-2(t) and Pi-4(t) genes of rice confer complete resistance to the blast fungal pathogen Pyricularia oryzae Cav. As economically important plant genes, they have been recently characterized phenotypically, yet nothing is known about their classical linkage associations and gene products. We report here the isolation of DNA markers closely linked to these blast resistance genes in rice. The DNA markers were identified by testing 142 mapped rice genomic clones as hybridization probes against Southern blots, consisting of DNA from pairs of nearly isogenic lines (NILs) with or without the target genes. Chromosomal segments introgressed from donor genomes were distinguished by restriction fragment length polymorphisms (RFLPs) between the NILs. Linkage associations of the clones with Pi-2(t) and Pi4(t) were verified using F3 segregating populations of known blast reaction. Cosegregation of the resistant genotype and donor-derived allele indicated the presence of linkage between the DNA marker and a blast resistance gene. RFLP analysis showed that Pi-2(t) is closely linked to a single-copy DNA clone RG64 on chromosome 6, with a distance of 2.8+1.4(SE) cMorgans. Another blast resistance gene, Pi-4(t), is 15.3+4.2(SE) cMorgans away from a DNA clone RG869 on chromosome 12. These chromosomal regions can now be examined with additional markers to define the precise locations of Pi-2(t) and Pi-4(t). Tightly linked DNA markers may facilitate early selection for blast resistance genes in breeding programs. These markers may also be useful to map new genes for resistance to blast isolates. They may ultimately lead to the cloning of those genes via chromosome walking. The gene tagging approach demonstrated in this paper may apply to other genes of interest for both monogenic and polygenic traits.
Article
To detect QTLs controlling traits of agronomic importance in rice, two elite homozygous lines 9024 and LH422, which represent the indica and japonica subspecies of rice (Oryza sativa), were crossed. Subsequently a modified single-seed-descent procedure was employed to produce 194 recombinant inbred lines (F8). The 194 lines were genotyped at 141 RFLP marker loci and evaluated in a field trial for 13 quantitative traits including grain yield. Transgressive segregants were observed for all traits examined. The number of significant QTLs (LOD [Symbol: see text] 2.0) detected affecting each trait ranged from one to six. The percentage of phenotypic variance explained by each QTL ranged from 5.1% to 73.7%. For those traits for which two or more QTLs were detected, increases in the traits were conditioned by indica alleles at some QTLs Japonica alleles at others. No significant evidence was found for epistasis between markers associated with QTLs and all the other markers. Pleitropic effects of single QTLs on different traits are suggested by the observation of clustering of QTLs. No QTL for traits was found to map to the vicinity of major gene loci governing the same traits qualitatively. Evidence for putative orthologous QTLs across rice, maize, oat, and barley is discussed.
Article
Observations of low-level infection by virulent populations of Magnaporthe grisea on traditional upland rice cultivars, reveal the existence of durable resistance. Its analysis demonstrates that it is a partial resistance. Resistant cultivars show an adult plant resistance; they limit the number and the size of lesions, that have the lowest capacity of sporulation. This partial resistance is of a polygenic nature. Segregating lines are usually screened for the total effect of the partial resistance components. One of the main problems in screening for durable resistance is the interaction between segregating lines having different race-specific major resistance genes in addition to different levels of partial resistance, and a blast population heterogeneous in virulence. Specific methods of breeding for partial polygenic resistance are proposed for pedigree selection and recurrent selection methods.
Article
Sasanishiki BL, a multiline variety of Sasanishiki for blast resistance was developed at Miyagi Prefec- tural Furukawa Agricultural Experiment Station in Japan. Sasanishiki BL is composed of 7 isogenic lines, Sasanishiki BL1 to BL7 with different resistance genes to blast disease. Sasanishiki BL was released to Miyagi Prefecture in 1994. The main characteristics of each component line are almost the same as those of Sasanishiki except for the resistance gene to blast disease. Sasanishiki BL has been cultivated in farmers' fields without rice blast damage since the released year. Discipline: Plant breeding
Article
2 SUMMARY Seven blast resistance genes─ Pi20, Pita, Pik † (one of Pik alleles, Pik, Pik-h, Pik-m, and Pik-p), Pib, Pik-s, Piz-t, and Pia─ were identified in International Rice Research Institute (IRRI)-bred rice varieties through genetic analyses based on a differential system. Segregation analyses were performed using BC1F2 populations derived from cr 2 osses of six varieties (IR34, IR36, IR60, IR74, IR46, and IR64) with a susceptible Indica-type variety CO39, and allelism tests using F2 populations derived from crosses of nine varieties (IR34, IR24, IR36, IR60, PSBRc1, IR74, IR56, IR70, and IR64) with differential varieties carrying known blast resistance genes. Selected Philippine blast isolates of Pyricularia grisea (Cooke) Sacc. with known avirulence were used in these analyses. The genotype for blast resistance of each variety was identified based on a gene-for-gene relationship between resistance in rice and avirulence in the blast pathogen. Among the genes identified, Pib and Pik-s or Pik † were detected in nearly all IRRI varieties used. Some genes that were not estimated from the reaction patterns of IRRI varieties in the previous analysis due to the masking effect of Pita, Pik † , and Pi20 were also identified.
Article
Rice blast, caused by the fungal pathogen Magnaporthe grisea, is one of the most serious diseases of rice. Here we describe the isolation and characterization of Pib, one of the rice blast resistance genes. The Pib gene was isolated by a map-based cloning strategy. The deduced amino acid sequence of the Pib gene product contains a nucleotide binding site (NBS) and leucine-rich repeats (LRRs); thus, Pib is a member of the NBS-LRR class of plant disease resistance genes. Interestingly, a duplication of the kinase 1a, 2 and 3a motifs of the NBS region was found in the N-terminal half of the Pib protein. In addition, eight cysteine residues are clustered in the middle of the LRRs, a feature which has not been reported for other R genes. Pib gene expression was induced upon altered environmental conditions, such as altered temperatures and darkness.
Article
Submergence stress is a widespread problem in rice-growing environments where drainage is impeded. A few cultivars can tolerate more than 10 days of submergence, but the genes conferring this tolerance have not been identified. We used randon-amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers to map submergence tolerance in 169 F2 plants and the resulting F3 families of a cross between a tolerant indica rice line, IR40931-26, and a susceptible japonica line, PI543851. IR40931-26 inherited strong submergence tolerance from the unimproved cultivar FR13A. Eight-day old F3 seedlings were submerged for 14–16 days in 55-cm deep tanks, and tolerance was scored after 7 days recovery on a scale of 1 (tolerant) to 9 (susceptible). The tolerant and susceptible parents scored 1.5 and 8.4, respectively, and the F3 means ranged from 1.6 to 8.9. Two bulks were formed with DNA from F2 plants corresponding to the nine most tolerant and the nine most susceptible F3 families. Of 624 RAPD primers used to screen the bulks, five produced bands associated with either tolerance or susceptibility. These markers were mapped to a region of chromosome 9 by linkage to RFLP markers. A submergence tolerance quantitative trait locus (QTL), here designatedSub1, was located ca. 4 cM from the RFLP marker C1232 and accounted for 69% of the phenotypic variance for the trait.
Article
Twenty-seven near-isogenic lines (NILs) with the genetic background of a blast-susceptible variety, CO 39, were developed by repeated backcrossing as a first set of a large number of differential varieties (DVs) with Indica-type genetic background. The NILs included 14 resistance genes—Pish, Pib, Piz-5, Piz-t, Pi5(t), Pik-s, Pik, Pik-h, Pik-m, Pik-p, Pi1, Pi7(t), Pita, and Pita-2—derived from 26 donor varieties. The reaction patterns of NILs against 20 standard isolates from the Philippines were similar to those of blast monogenic lines with the same resistance gene, except for those against two isolates that are avirulent to Pia in the genetic background of CO 39. A genome-wide DNA marker survey revealed that chromosome segments were introgressed in the regions where each resistance gene was previously mapped and most of the other chromosome regions in each NIL were CO 39 type. Segregation analysis of resistance and co-segregation analysis between resistance and DNA markers using F3 populations derived from the crosses between each NIL and the recurrent parent, CO 39, revealed a single-gene control of resistance and association between resistance and target introgressed segments. The morphological characters of each NIL were almost the same as those of the recurrent parent except for some lines, suggesting that these NILs can be used even under tropical conditions where Japonica-type DVs are not suitable for cropping. Thus, these NILs are useful not only as genetic tools for blast resistance study but also as sources of genes for breeding of Indica-type rice varieties.
Article
ABSTRACT Pi7(t), a dominant blast resistance gene derived from the rice cultivar Moroberekan, confers complete resistance against the fungal pathogen Magnaporthe grisea. Pi7(t) previously was positioned on chromosome 11 by restriction fragment length polymorphism (RFLP) mapping of a recombinant inbred line population. One derivative of this population, recombinant inbred line (RIL)29, was designated as the representative line for Pi7(t). A segregating F2 population was created from RIL29 in order to determine the location of Pi7(t). The new mapping data indicate a position for Pi7(t) 30 centimorgans distal to the original location. Pi7(t) shares a common position with the previously mapped Pi1 M. grisea resistance gene. RIL29 carries DNA not derived from either parent used to create the RIL population at the newly assigned Pi7(t) locus. RFLP analysis has identified a possible donor source.
Article
Blast resistance is one of the most important traits in rice breeding, and application of molecular markers for blast resistance breeding is likely to allow the rapid screening for the trait during early growth stages, without the need for inoculation of pathogen and phenotyping. Allele-specific PCR markers and insertion/deletion (InDel) markers, which genotype single-nucleotide polymorphisms and InDel polymorphisms, respectively, are useful tools for marker-assisted selections. We developed sets of allele-specific PCR and InDel markers for nine rice blast resistance genes -- Piz, Piz-t, Pit, Pik, Pik-m, Pik-p, Pita, Pita-2, and Pib -- which are commonly used in Japanese blast resistance rice breeding programs. For each resistance gene, we used the segregation information from thousands of progeny in several crosses or published gene locations to generate a marker that cosegregated with the gene and markers that closely flanked the gene on either side. The developed cosegregating markers uniquely discriminated among each of the lines with the individual resistance genes (except for Pita and Pita-2). Therefore, these markers will likely facilitate the development of multiline cultivars carrying one or a combination of these nine blast resistance genes. In addition, the systems we developed may be valuable tools in the quality control of seed production from blast-resistant multiline cultivars.
Effect of mixtures of isogenic lines developed from rice cvs, Sasanishiki and Nipponbare on blast development
  • S Koizumi
  • S Fuji
Koizumi, S., Fuji, S., 1994. Effect of mixtures of isogenic lines developed from rice cvs, Sasanishiki and Nipponbare on blast development. Res. Bull. Aichi Agroc. Res. Ctr. 26, 87–97
Identification of quantitative trait loci and epistatic inter-actions for plant height and heading date in rice The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea
  • Sb Yu
  • Jx Li
  • Cg Xu
  • Xh Yf Tan
  • Li
  • Zhang
  • B Zhou
  • S Qu
  • G Liu
  • M Dolan
  • H Sakai
  • G Lu
  • M Bellizzi
  • Wang
Theor Appl Genet 77:95–101 Yu SB, Li JX, Xu CG, Tan YF, Xh Li, Zhang Q (2002) Identification of quantitative trait loci and epistatic inter-actions for plant height and heading date in rice. Theor Appl Genet 104:619–625 Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact 19: 1216–1228 Mol Breeding 123
Studies on genetics and breeding of blast resistance in rice
  • S Kiyosawa
Kiyosawa, S., 1974. Studies on genetics and breeding of blast resistance in rice. Misc. Publ. Bull. Natl. Agric. Sci., Ser. D 1, 1–58
Molecular breeding for rainfed lowland rice in the Mekong region Development of monogenic lines of rice for blast resistance
  • T Toojinda
  • S Tragoonrung
  • A Vanavichit
  • J L Siangliw
  • Pa
  • N In
  • J Jantaboon
  • M Siangliw
  • S Fukai
Toojinda, T., Tragoonrung, S., Vanavichit, A., Siangliw, J.L., Pa-In, N., Jantaboon, J., Siangliw, M., Fukai, S., 2005. Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod. Sci. 8, 330–333. rY. Koide et al. / Field Crops Research 123 (2011) 19–27 27 Tsunematsu, H., Yanoria, M.J.T., Ebron, L.A., Hayashi, N., Ando, I., Kato, H., Imbe, T., Khush, G.S., 2000. Development of monogenic lines of rice for blast resistance. Breed. Sci. 50, 229–234
Saturatedmolecularmapofthericegenomebasedonaninterspecificbackcross population
  • M A Causse
  • T M Fulton
  • Y G Cho
  • S N Ahn
  • J Chunwongse
  • K Wu
  • J Xiao
  • Z Yu
  • P C Ronald
  • S E Hanington
  • G Second
  • S R Mccouch
  • S D Tanksley
Causse, M.A., Fulton, T.M., Cho, Y.G., Ahn, S.N., Chunwongse, J., Wu, K., Xiao, J., Yu, Z., Ronald, P.C., Hanington, S.E., Second, G., McCouch, S.R., Tanksley, S.D., 1994. Saturatedmolecularmapofthericegenomebasedonaninterspecificbackcross population. Genetics 138, 1251–1274
Breedingstrate-gies for rainfed lowland ecosystem In: Fragile lives in fragile ecosystems
  • S Sarkarung
  • O N Singh
  • J K Roy
  • A Vanachivit
  • P Bhekasut
Sarkarung,S.,Singh,O.N.,Roy,J.K.,Vanachivit,A.,Bhekasut,P.,1995.Breedingstrate-gies for rainfed lowland ecosystem. In: Fragile lives in fragile ecosystems ,. Proc. Int. Rice Res. Conf., IRRI, Manila, Philippines, pp. 709–720