Physical-Activity and Incidence of Non-Insulin-Dependent Diabetes-Mellitus in Women

ArticleinThe Lancet 338(8770):774-8 · October 1991with24 Reads
DOI: 10.1016/0140-6736(91)90664-B · Source: PubMed
The potential role of physical activity in the primary prevention of non-insulin-dependent diabetes mellitus (NIDDM) is largely unknown. We examined the association between regular vigorous exercise and the subsequent incidence of NIDDM in a prospective cohort of 87,253 US women aged 34-59 years and free of diagnosed diabetes, cardiovascular disease, and cancer in 1980. During 8 years of follow-up, we confirmed 1303 cases of NIDDM. Women who engaged in vigorous exercise at least once per week had an age-adjusted relative risk (RR) of NIDDM of 0.67 (p less than 0.0001) compared with women who did not exercise weekly. After adjustment for body-mass index, the reduction in risk was attenuated but remained statistically significant (RR = 0.84, p = 0.005). When analysis was restricted to the first 2 years after ascertainment of physical activity level and to symptomatic NIDDM as the outcome, age-adjusted RR of those who exercised was 0.5, and age and body-mass index adjusted RR was 0.69. Among women who exercised at least once per week, there was no clear dose-response gradient according to frequency of exercise. Family history of diabetes did not modify the effect of exercise, and risk reduction with exercise was evident among both obese and nonobese women. Multivariate adjustments for age, body-mass index, family history of diabetes, and other variables did not alter the reduced risk found with exercise. Our results indicate that physical activity may be a promising approach to the primary prevention of NIDDM.
    • "Participants who self-reported physician-diagnosed diabetes were sent a supplementary questionnaire with established validity to confirm diagnosis [21,22]. Only confirmed cases that met !1 of the following criteria were included (as per the National Diabetes Data Group) [23]: (a) !1 classic symptoms plus fasting blood glucose ! "
    [Show abstract] [Hide abstract] ABSTRACT: Background: Plant-based diets have been recommended to reduce the risk of type 2 diabetes (T2D). However, not all plant foods are necessarily beneficial. We examined the association of an overall plant-based diet and hypothesized healthful and unhealthful versions of a plant-based diet with T2D incidence in three prospective cohort studies in the US. Methods and findings: We included 69,949 women from the Nurses' Health Study (1984-2012), 90,239 women from the Nurses' Health Study 2 (1991-2011), and 40,539 men from the Health Professionals Follow-Up Study (1986-2010), free of chronic diseases at baseline. Dietary data were collected every 2-4 y using a semi-quantitative food frequency questionnaire. Using these data, we created an overall plant-based diet index (PDI), where plant foods received positive scores, while animal foods (animal fats, dairy, eggs, fish/seafood, poultry/red meat, miscellaneous animal-based foods) received reverse scores. We also created a healthful plant-based diet index (hPDI), where healthy plant foods (whole grains, fruits, vegetables, nuts, legumes, vegetable oils, tea/coffee) received positive scores, while less healthy plant foods (fruit juices, sweetened beverages, refined grains, potatoes, sweets/desserts) and animal foods received reverse scores. Lastly, we created an unhealthful plant-based diet index (uPDI) by assigning positive scores to less healthy plant foods and reverse scores to healthy plant foods and animal foods. We documented 16,162 incident T2D cases during 4,102,369 person-years of follow-up. In pooled multivariable-adjusted analysis, both PDI and hPDI were inversely associated with T2D (PDI: hazard ratio [HR] for extreme deciles 0.51, 95% CI 0.47-0.55, p trend < 0.001; hPDI: HR for extreme deciles 0.55, 95% CI 0.51-0.59, p trend < 0.001). The association of T2D with PDI was considerably attenuated when we additionally adjusted for body mass index (BMI) categories (HR 0.80, 95% CI 0.74-0.87, p trend < 0.001), while that with hPDI remained largely unchanged (HR 0.66, 95% CI 0.61-0.72, p trend < 0.001). uPDI was positively associated with T2D even after BMI adjustment (HR for extreme deciles 1.16, 95% CI 1.08-1.25, p trend < 0.001). Limitations of the study include self-reported diet assessment, with the possibility of measurement error, and the potential for residual or unmeasured confounding given the observational nature of the study design. Conclusions: Our study suggests that plant-based diets, especially when rich in high-quality plant foods, are associated with substantially lower risk of developing T2D. This supports current recommendations to shift to diets rich in healthy plant foods, with lower intake of less healthy plant and animal foods.
    Full-text · Article · Jun 2016
    • "For cases identified after 1998, we applied the American Diabetes Association criteria (18), in which the threshold for diagnosis of diabetes changed from a fasting plasma glucose concentration of 7.8 mmol/L to a concentration of 7.0 mmol/L. The validity of the supplementary questionnaire has been documented through medical record review (19, 20). "
    [Show abstract] [Hide abstract] ABSTRACT: Dietary proteins are important modulators of glucose metabolism. However, few longitudinal studies have evaluated the associations between intake of protein and protein type and risk of type 2 diabetes (T2D). We investigated the associations between total, animal, and vegetable protein and incident T2D in 72,992 women from the Nurses' Health Study (1984–2008), 92,088 women from Nurses' Health Study II (1991–2009) and 40,722 men from the Health Professionals Follow-up Study (1986–2008). During 4,146,216 person-years of follow-up, we documented 15,580 cases of T2D. In pooled multivariate models including body mass index, participants in the highest quintiles of percentage of energy derived from total protein and animal protein had 7% (95% confidence interval (CI): 1, 17) and 13% (95% CI: 6, 21) increased risks of T2D compared with those in the lowest quintiles, respectively. Percentage of energy intake from vegetable protein was associated with a moderately decreased risk of T2D (comparing extreme quintiles, hazard ratio =0.91, 95% CI: 0.84, 0.98). Substituting 5% of energy intake from vegetable protein for animal protein was associated with a 23% (95% CI: 16, 30) reduced risk of T2D. In conclusion, higher intake of animal protein was associated with an increased risk of T2D, while higher intake of vegetable protein was associated with a modestly reduced risk.
    Article · Mar 2016
    • "These, in turn, can be influenced by the terrain, street design and urban layout. Urban air quality is also influenced by the amount of parks and open spaces in a city which again might have an effect on urban climate and its associated health ef- fects [9] as well as on the physical activity levels of urban residents which are related to the risk of obesity, diabetes and cardiovascular disease [10, 11]. In addition, historical artefacts such as industrial heritage, traditional pockets of deprivation and the temporal city development have an influence on the wellbeing of urban resi- dents [12]. "
    [Show abstract] [Hide abstract] ABSTRACT: Seventy-five percent of the population in Europe live in urban areas and analysing the effects of urban form on the health of the urban population is of great public health interest. Not much is known, however, on the effects of urban form on the health of city dwellers. This study uses a novel approach to investigate whether associations exist between different measures of urban form and mortality risks in cities in England. We conducted an ecological, cross-sectional study for urban areas in England with more than 100,000 residents (n = 50) and included all registered premature deaths (<65 years) between 1 st January 2002 and 31 st December 2009. To describe and categorise urban form we quantified the distribution and density of population, land cover and transport networks and measures of geographical characteristics. We used Poisson regression models to examine associations between the measures of urban form and age-standardised risks of deaths from all causes, cardiovascular disease, and traffic accidents after adjustment for socioeconomic status and smoking. Analysis was stratified by gender to explore differential associations between females and males. There were a total of 200,200 premature deaths during the study period (Females: 37 %; Males: 63 %). Transport network patterns were associated with overall and cardiovascular mortality rates in cities. We saw 12 % higher mortality risk after adjustment in cities with high junction density compared to cities with low density [Females: RR 1.12 (95 % CI 1.10 – 1.15); Males: RR 1.12 (95 % CI 1.10–1.14)]; the risk was slightly higher for cardiovascular mortality [Females: RR 1.16 (95 % CI 1.10 – 1.22); Males: RR 1.12 (95 % CI 1.09 – 1.16)]. Associations between mortality and population patterns were of similar magnitude [Females: RR 1.10 (95 % CI 1.09 – 1.13); Males: RR 1.09 (95 % CI 1.07–1.10)]; associations between mortality and land cover patterns were inconclusive. We found an association between transport patterns and risk of premature mortality. Associations between urban form and mortality observed in this study suggest that characteristics of city structure might have negative effects on the overall health of urban communities. Future urban planning and regeneration strategies can benefit from such knowledge to promote a healthy living environment for an increasing urban population.
    Full-text · Article · Mar 2016
Show more

Recommended publications

Discover more