Article

Antithrombin Cambridge II, 384 Ala to Ser Further evidence of the reactive center loop in the inhibitory function of the serpins

Department of Haematology, University of Cambridge, UK.
FEBS Letters (Impact Factor: 3.17). 08/1991; 285(2):248-50. DOI: 10.1016/0014-5793(91)80809-H
Source: PubMed

ABSTRACT

Four unrelated individuals have been identified with an identical antithrombin variant, associated in one of them with episodes of recurrent venous thromboses. In each case, the plasma antithrombin concentration was normal and the only function abnormality was a minor but consistent decrease in the heparin-induced thrombin inhibition suggesting a mutation at or near the reactive centre of the molecule. Amplification and direct sequencing of exon 6 showed a G----T mutation at nucleotide 1246, which corresponds to a substitution of a serine for an alanine at residue 384. This is one of a series of conserved alanines that form the stalk to the reactive centre loop. The observed changes in this variant are compatible with recent structural studies that infer that mobility of this stalk with partial re-entry into the A-sheet of the molecule is necessary for optimal inhibitory activity.

Download full-text

Full-text

Available from: Martina E. Daly
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ovalbumin, the major protein in avian egg-white, is a non-inhibitory member of the serine protease inhibitor (serpin) superfamily. The crystal structure of uncleaved, hen ovalbumin was solved by the molecular replacement method using the structure of plakalbumin, a proteolytically cleaved form of ovalbumin, as a starting model. The final refined model, including four ovalbumin molecules, 678 water molecules and a single metal ion, has a crystallographic R-factor of 17.4% for all reflections between 6.0 and 1.95 A resolution. The root-mean-square deviation from ideal values in bond lengths is 0.02 A and in bond angles is 2.9 degrees. This is the first crystal structure of a member of the serpin family in an uncleaved form. Surprisingly, the peptide that is homologous to the reactive centre of inhibitory serpins adopts an alpha-helical conformation. The implications for the mechanism of inhibition of the inhibitory members of the family is discussed.
    No preview · Article · Nov 1991 · Journal of Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A synthetic tetradecapeptide having the sequence of the region of the antithrombin chain amino-terminal to the reactive bond, i.e. comprising residues P1 to P14, was shown to form a tight equimolar complex with antithrombin. A similar complex has previously been demonstrated between alpha 1-proteinase inhibitor and the analogous peptide of this inhibitor (Schulze, A. J., Baumann, U., Knof, S., Jaeger, E., Huber, R. and Laurell, C.-B. (1990) Eur. J. Biochem. 194, 51-56). The antithrombin-peptide complex had a conformation similar to that of reactive bond-cleaved antithrombin and, like the cleaved inhibitor, also had a higher conformational stability and lower heparin affinity than intact antithrombin. These properties suggest that the peptide bound to intact antithrombin at the same site that the P1 to P14 segment of the inhibitor occupies in reactive-bond-cleaved antithrombin, i.e. was incorporated as a sixth strand in the middle of the major beta-sheet, the A sheet. The extent of complex formation was reduced in the presence of heparin with high affinity for antithrombin, which is consistent with heparin binding and peptide incorporation being linked. Antithrombin in the complex with the tetradecapeptide had lost its ability to inactivate thrombin, but the reactive bond of the inhibitor was cleaved as in a normal substrate. These observations suggest a model, analogous to that proposed for alpha 1-proteinase inhibitor (Engh, R.A., Wright, H.T., and Huber, R. (1990) Protein Eng. 3, 469-477) for the structure of intact antithrombin, in which the A sheet contains only five strands and the P1 to P14 segment of the chain forms part of an exposed loop of the protein. The results further support a reaction model for serpins in which partial insertion of this loop into the A sheet is required for trapping of a proteinase in a stable complex, and complete insertion is responsible for the conformational change accompanying cleavage of the reactive bond of the inhibitor.
    Full-text · Article · Feb 1992 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elucidation of the reactive site loop (RSL) structure of serpins is essential for understanding their inhibitory mechanism. Maintenance of the RSL structure is likely to depend on its interactions with a dominant unit of secondary structure known as the A-sheet. We investigated these interactions by subjecting alpha-1-proteinase inhibitor to limited proteolysis using several enzymes. The P1-P10 region of the RSL was extremely sensitive to proteolysis, indicating that residues P3'-P13 are exposed in the virgin inhibitor. Following cleavage eight or nine residues upstream from the reactive site, the protein noncovalently polymerized, sometimes forming circles. Polymerization resulted from insertion of the P1-P8 or P1-P9 region of one molecule into the A-sheet of an adjacent proteolytically modified molecule. The site of cleavage within the RSL had a distinct effect on the conformational stability of the protein, such that stability increased as more amino acids insert into the A-sheet. We conclude that the A-sheet of virgin alpha-1-proteinase inhibitor resembles that of ovalbumin, except that it contains a bulge where two or three RSL residues are inserted. Insertion of seven or eight RSL residues, allowed by proteolytic cleavage of the RSL, causes expansion of the sheet. It is likely that the RSL of alpha-1-proteinase inhibitor and several serpins exhibits significantly more mobility than is common among other protein inhibitors of serine proteinases.
    No preview · Article · Mar 1992 · Biochemistry
Show more