Effect of Treatment with Phenformin, Diphenylhydantoin or L -Dòpa on Life Span and Tumour Incidence in C3H/Sn Mice

Gerontology (Impact Factor: 3.06). 02/1980; 26(5):241-6. DOI: 10.1159/000212423
Source: PubMed


The chronic treatment of female C3H/Sn mice with phenformin (2 mg/day) and diphenylhydantoin (2 mg/day) prolonged mean life span by 23 and 25%, respectively, and decreased spontaneous tumour incidence by 4.0 and 2.3 times, respectively. The chronic treatment of mice with L-dopa (2 mg/day) did not change these parameters and decreased the multiplicity of mammary tumours. The mechanisms of the drug action on mouse life span and tumour incidence are discussed.

41 Reads
    • "Biguanides are a class of anti-diabetic drugs, of which metformin and phenformin have been frequently studied [21]. Both of these drugs have recently been shown to exhibit an antineoplastic effect against several types of cancers especially cancer stem cells [16,22,23]. Metformin is a highly prescribed drug for Type-2 diabetes mellitus (T2DM), and is preferred over phenformin because of lesser incidence of lactic acidosis in treated patients [24]. "
    [Show abstract] [Hide abstract] ABSTRACT: Conventional cancer chemotherapy often fails as most anti-cancer drugs are not effective against drug-resistant cancer stem cells. These surviving cancer stem cells lead to relapse and metastasis. In this study, an anti-diabetic drug, phenformin, capable of eliminating cancer stem cells was loaded into micelles via self-assembly using a mixture of a diblock copolymer of poly(ethylene glycol) (PEG) and urea-functionalized polycarbonate and a diblock copolymer of PEG and acid-functionalized polycarbonate through hydrogen bonding. The phenformin-loaded micelles, having an average diameter of 102 nm with narrow size distribution, were stable in serum-containing solution over 48 h and non-cytotoxic towards non-cancerous cells. More than 90% of phenformin was released from the micelles over 96 h. Lung cancer stem cells (side population cells, i.e. SP cells) and non-SP cells were sorted from H460 human lung cancer cell line, and treated with free phenformin and phenformin-loaded micelles. The results showed that the drug-loaded micelles were more effective in inhibiting the growth of both SP and non-SP cells. In vivo studies conducted in an H460 human lung cancer mouse model demonstrated that the drug-loaded micelles had greater anti-tumor efficacy, and reduced the population of SP cells in the tumor tissues more effectively than free phenformin. Liver function analysis was performed following drug treatments, and the results indicated that the drug-loaded micelles did not cause liver damage, a harmful side-effect of phenformin when used clinically. These phenformin-loaded micelles may be used to target both cancer cells and cancer stem cells in chemotherapy for the prevention of relapse and metastasis.
    No preview · Article · Aug 2014 · Biomaterials
  • Source
    • "This caused progressive alteration of homeostasis, metabolic disturbances, leading to age-related diseases [6-13]. In other words, there is an age-related loss of sensitivity by the hypothalamus to the negative feedback of certain hormones, such as estrogens and glucocorticoids [6-13]. This explains the development of age-related diseases, including metabolic disorders and menopause. "
    [Show abstract] [Hide abstract] ABSTRACT: A recent ground-breaking publication described hypothalamus-driven programmatic aging. As a Russian proverb goes "everything new is well-forgotten old". In 1958, Dilman proposed that aging and its related diseases are programmed by the hypothalamus. This theory, supported by beautiful experiments, remained unnoticed just to be re-discovered recently. Yet, it does not explain all manifestations of aging. And would organism age without hypothalamus? Do sensing pathways such as MTOR (mechanistic Target of Rapamycin) and IKK-beta play a role of a "molecular hypothalamus" in every cell? Are hypothalamus-driven alterations simply a part of quasi-programmed aging manifested by hyperfunction and secondary signal-resistance? Here are some answers.
    Full-text · Article · Jul 2013 · Aging
  • Source
    • "These data are in line with the current hypothesis that increased risk of IR in HCV patients depends on the combination of IFNG-induced upregulation of TRP–KYN metabolism with P5P deficiencyinduced dysregulation of KYN–NAD metabolic pathway. Aging IR was originally suggested as a mechanism of aging by Dilman83848586. IR is the key factor of aging metabolic syndrome [87] . Aging is associated with vitamin B 6 defi- ciency [88, 89] and increased plasma neopterin and KTR [46, 90]. "
    [Show abstract] [Hide abstract] ABSTRACT: Insulin resistance (IR) underlines aging and aging-associated medical (diabetes, obesity, dyslipidemia, hypertension) and psychiatric (depression, cognitive decline) disorders. Molecular mechanisms of IR in genetically or metabolically predisposed individuals remain uncertain. Current review of the literature and our data presents the evidences that dysregulation of tryptophan (TRP)-kynurenine (KYN) and KYN-nicotinamide adenine dinucleotide (NAD) metabolic pathways is one of the mechanisms of IR. The first and rate-limiting step of TRP-KYN pathway is regulated by enzymes inducible by pro-inflammatory factors and/or stress hormones. The key enzymes of KYN-NAD pathway require pyridoxal-5-phosphate (P5P), an active form of vitamin B6, as a cofactor. Deficiency of P5P diverts KYN-NAD metabolism from production of NAD to the excessive formation of xanthurenic acid (XA). Human and experimental studies suggested that XA and some other KYN metabolites might impair production, release, and biological activity of insulin. We propose that one of the mechanisms of IR is inflammation- and/or stress-induced upregulation of TRP-KYN metabolism in combination with P5P deficiency-induced diversion of KYN-NAD metabolism towards formation of XA and other KYN derivatives affecting insulin activity. Monitoring of KYN/P5P status and formation of XA might help to identify subjects at risk for IR. Pharmacological regulation of the TRP-KYN and KYN-NAD pathways and maintaining of adequate vitamin B6 status might contribute to prevention and treatment of IR in conditions associated with inflammation/stress-induced excessive production of KYN and deficiency of vitamin B6, e.g., type 2 diabetes, obesity, cardiovascular diseases, aging, menopause, pregnancy, and hepatitis C virus infection.
    Full-text · Article · Jun 2013 · Molecular Neurobiology
Show more


41 Reads
Available from
May 26, 2014