Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science

University of Strasbourg, Strasburg, Alsace, France
Science (Impact Factor: 33.61). 08/1994; 265(5169):237-41. DOI: 10.1126/science.7517574
Source: PubMed


Human lymphocyte antigen (HLA) class I proteins of the major histocompatibility complex are largely dependent for expression on small peptides supplied to them by transporter associated with antigen processing (TAP) protein. An inherited human deficiency in the TAP transporter was identified in two siblings suffering from recurrent respiratory bacterial infections. The expression on the cell surface of class I proteins was very low, whereas that of CD1a was normal, and the cytotoxicity of natural killer cells was affected. In addition, CD8+ alpha beta T cells were present in low but significant numbers and were cytotoxic in the most severely affected sibling, who also showed an increase in CD4+CD8+ T cells and gamma delta T cells.

Download full-text


Available from: Henri de la Salle, Apr 27, 2015
  • Source
    • "only a moderate number of cases have been reported worldwide [60]. "

    Full-text · Dataset · Nov 2014
  • Source
    • "only a moderate number of cases have been reported worldwide [60]. The three functional modules of the TAP complex are discussed below. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. Scope of review: The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. Major conclusions: Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. General significance: Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
    Full-text · Article · Jun 2014 · Biochimica et Biophysica Acta (BBA) - General Subjects
  • Source
    • "When HLA molecules are not loaded with antigens, they become unstable and are degraded more rapidly in the cells. This results in a lower level of HLA molecules on the cell surface1920. As shown in Fig. 6. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer-associated protein tyrosine kinase (PTK) mutations usually are gain-of-function (GOF) mutations that drive tumor growth and metastasis. We have found 50 JAK1 truncating mutations in 36 of 635 gynecologic tumors in the Total Cancer Care® (TCC®) tumor bank. Among cancer cell lines containing JAK1 truncating mutations in the Cancer Cell Line Encyclopedia databank, 68% are gynecologic cancer cells. Within JAK1 the K142, P430, and K860 frame-shift mutations were identified as hot spot mutation sites. Sanger sequencing of cancer cell lines, primary tumors, and matched normal tissues confirmed the JAK1 mutations and showed that these mutations are somatic. JAK1 mediates interferon (IFN)-γ-regulated tumor immune surveillance. Functional assays show that JAK1 deficient cancer cells are defective in IFN-γ-induced LMP2 and TAP1 expression, loss of which inhibits presentation of tumor antigens. These findings identify recurrent JAK1 truncating mutations that could contribute to tumor immune evasion in gynecologic cancers, especially in endometrial cancer.
    Full-text · Article · Oct 2013 · Scientific Reports
Show more