Improved MR images of arterial specimens by submersion in trichlorotrifluoroethane

Department of Medical Biophysics, University of Western Ontario, London, Canada.
Magnetic Resonance in Medicine (Impact Factor: 3.57). 05/1996; 35(5):790-6. DOI: 10.1002/mrm.1910350522
Source: PubMed


MR images of ex vivo arterial specimens immersed in 1,1,2-trichloro-1,2,2-trifluoroethane (R-113) have improved signal-to-noise ratio and contrast-to-noise ratio. R-113 has no hydrogen atoms, so it yields no proton signal; hence, the contrast between the specimen and its background is maximized. SNR is maximized because (i) R-113 is nonconductive so that coil loading and inductive noise are minimized, and (ii) the volume susceptibility of R-113 closely matches that of water and tissue so that T2* effects are minimized. Short-term submersion of porcine aortas in R-113 was found to have no significant effect on the artery's hydration level, relaxation time, tensile strength, and structure or quantity of elastin, collagen, or smooth muscle cells.

2 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The authors present a unique application of polyvinyl alcohol (PVA) cryogel as an anthropomorphic, elastic, vascular phantom material that can be used in MR imaging. The composition consists of two nontoxic ingredients: water and PVA. The biomechanical and MR properties can be adjusted to be similar to those of excised porcine aortas by varying the number of freeze-thaw cycles to which the PVA solution is exposed. The authors present the T1, T2, shrinkage, and tensile properties of PVA cryogel tubes as a function of freeze-thaw cycles. MR images of a dual elastic aortic phantom undergoing pulsatile motion are shown.
    No preview · Article · Feb 1997 · Magnetic Resonance in Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MRI is emerging as a promising modality for monitoring carotid atherosclerosis. Multiple MR contrast weightings are required for identification of plaque constituents. In this study, eight MR contrast weightings with proven potential for plaque characterization were used to image carotid endarterectomy specimens. A classification technique was developed to create a tissue-specific map by incorporating information from all MR contrast weightings. The classifier was validated by comparison with micro-CT (calcification only) and with matched histological slices registered to MR images using a nonlinear warping algorithm (other components). A pathologist who was blinded to the classifier results manually segmented digitized histological images. The sensitivity of the classifier, as determined by pixel-by-pixel comparison with the pathologist's segmentation and micro-CT, was 60.4% for fibrous tissue, 83.9% for necrosis, 97.6% for calcification, and 65.2% for loose connective tissue. The corresponding values for specificity were 87.9%, 75.0%, 98.3%, and 94.9%, respectively. In conclusion, multicontrast MRI was successfully used in conjunction with a supervised classification algorithm to identify plaque components in endarterectomy specimens. Furthermore, this methodology will provide a framework for comparing different classification algorithms, and determining which combination of MR contrasts will be most valuable for in vivo plaque imaging.
    Full-text · Article · Dec 2003 · Magnetic Resonance in Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multicontrast-weighted MRI has the potential to become a powerful tool for assessment of atherosclerotic plaque. However, similarities in MR properties across plaque components limit the certainty with which these components can be differentiated. An understanding of MRI's underlying limitations in distinguishing atherosclerotic plaque components, and optimization of key parameters (including the set of components investigated and contrast weightings used) are required. In this study we analyzed endarterectomy specimens using multicontrast MRI and compared the results with matching histological findings to determine the probability of error, an unbiased measure of the underlying error caused by similarity in the spectral characteristics of components. The total error was >40% when five distinct components were investigated, but this was halved when components with similar functions and intensities were grouped together. When three contrast weightings were used to view plaque, diffusion-weighted imaging (DWI) proved valuable for separating hemorrhage from necrotic core, and "hemorrhage + necrotic" from "loose connective tissue + fibrous tissue." A two-way interaction between contrast weightings and components demonstrated that the value of a contrast can be exploited or marginalized depending on the choice of contrast weightings used.
    No preview · Article · May 2007 · Magnetic Resonance in Medicine