The Dual Specificity Mitogen-activated Protein Kinase Phosphatase-1 and -2 Are Induced by the p42/p44MAPK Cascade

Université de Nice, Centre de Biochimie, CNRS UMR 134, France.
Journal of Biological Chemistry (Impact Factor: 4.57). 02/1997; 272(2):1368-76. DOI: 10.1074/jbc.272.2.1368
Source: PubMed


Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and MKP-2 are two members of a recently described family of dual specificity phosphatases that are capable of dephosphorylating p42/p44MAPK. Overexpression of MKP-1 or MKP-2 inhibits MAP kinase-dependent intracellular signaling events and fibroblast proliferation. By using specific antibodies that recognize endogenous MKP-1 and MKP-2 in CCL39 cells, we show that MKP-1 and MKP-2 are not expressed in quiescent cells, but are rapidly induced following serum addition, with protein detectable as early as 30 min (MKP-1) or 60 min (MKP-2). Serum induction of MKP-1 and MKP-2 is sustained, with protein detectable up to 14 h after serum addition. Induction of MKP-1 and, to a lesser extent, MKP-2 temporally correlates with p42/p44MAPK inactivation. To analyze the contribution of the MAP kinase cascade to MKP-1 and MKP-2 induction, we examined CCL39 cells transformed with either v-ras or a constitutively active direct upstream activator of MAP kinase, mitogen-activated protein kinase kinase-1 (MKK-1; MKK-1(SD/SD) mutant). In both cell models, MKP-1 and MKP-2 are constitutively expressed, with MKP-2 being prevalent. In addition, in CCL39 cells expressing an estradiol-inducible deltaRaf-1::ER chimera, activation of Raf alone is sufficient to induce MKP-1 and MKP-2. The role of the MAP kinase cascade in MKP induction was highlighted by the MKK-1 inhibitor PD 098059, which blunted both the activation of p42/p44MAPK and the induction of MKP-1 and MKP-2. However, the MAP kinase cascade is not absolutely required for the induction of MKP-1, as this phosphatase, but not MKP-2, was induced to detectable levels by agents that stimulate protein kinases A and C. Thus, activation of the p42/p44MAPK cascade promotes the induction of MKP-1 and MKP-2, which may then attenuate p42/p44MAPK-dependent events in an inhibitory feedback loop.

Full-text preview

Available from:
  • Source
    • "Although some in vitro studies have demonstrated that this ability is more marked in relation to ERK1/2 and SAPK/JNK than it is in relation to p38,33–34 others have identified an important role for DUSP4 in p38 inactivation. Indeed, DUSP4 is able to dephosphorylate all 3 MAPKs in CCL‐38 cells35 and can also function as a potent inhibitor of p38 activity in PC‐12 cells in response to nerve growth factor.36 These differences in DUSP4 substrate specificity can be explained in part by differential levels of phosphatase expression, because DUSP4 at very high concentrations loses its selectivity for determined MAPKs.34 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiopoietin-1 (Ang-1) promotes survival and migration of endothelial cells, in part through the activation of mitogen-activated protein kinase (MAPK) pathways downstream of Tie-2 receptors. Dual-specificity phosphatases (DUSPs) dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine residues on target MAPKs. The mechanisms by which DUSPs modulate MAPK activation in Ang-1/Tie-2 receptor signaling are unknown in endothelial cells. Expression of various DUSPs in human umbilical vein endothelial cells exposed to Ang-1 was measured. The functional roles of DUSPs in Ang-1-induced regulation of MAPK activation, endothelial cell survival, migration, differentiation, and permeability were measured using selective siRNA oligos. Ang-1 differentially induces DUSP1, DUSP4, and DUSP5 in human umbilical vein endothelial cells through activation of the PI-3 kinase, ERK1/2, p38, and SAPK/JNK pathways. Lack-of-function siRNA screening revealed that DUSP1 preferentially dephosphorylates p38 protein and is involved in Ang-1-induced cell migration and differentiation. DUSP4 preferentially dephosphorylates ERK1/2, p38, and SAPK/JNK proteins and, under conditions of serum deprivation, is involved in Ang-1-induced cell migration, several antiapoptotic effects, and differentiation. DUSP5 preferentially dephosphorylates ERK1/2 proteins and is involved in cell survival and inhibition of permeability. DUSP1, DUSP4, and DUSP5 differentially modulate MAPK signaling pathways downstream of Tie-2 receptors, thus highlighting the importance of these phosphatases to Ang-1-induced angiogenesis.
    Full-text · Article · Oct 2013 · Journal of the American Heart Association
  • Source
    • "The increasing steepness of the response emerges from the fact that each lower step in the cascade is responding to a sigmoidal input in a sigmoidal fashion. MAPK cascades may have a negative feedback regulation by the last to the first member in the cascade (Brondello et al., 1997; Keyse, 2000; Kholodenko, 2000; Asthagiri and Lauffenburger, 2001; Nijhout et al., 2003). Figure 5 shows the dose-response behavior of our model when such a feedback is included, using the same kinetic parameters as in Figure 4. Including the feedback makes the response of the terminal kinase less switch-like. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we develop a novel mathematical model of the insulin-TOR-MAPK signaling network that controls growth. Most data on the properties of the insulin and MAPK signaling networks are static and the responses to experimental interventions, such as knockouts, overexpression, and hormonal input are typically reported as scaled quantities. The modeling paradigm we develop here uses scaled variables and is ideally suited to simulate systems in which much of the available data are scaled. Our mathematical representation of signaling networks provides a way to reconcile theory and experiments, thus leading to a better understanding of the properties and function of these signaling networks. We test the performance of the model against a broad diversity of experimental data. The model correctly reproduces experimental insulin dose-response relationships. We study the interaction between insulin and MAPK signaling in the control of protein synthesis, and the interactions between amino acids, insulin and TOR signaling. We study the effects of variation in FOXO expression on protein synthesis and glucose transport capacity, and show that a FOXO knockout can partially rescue protein synthesis capacity of an insulin receptor (INR) knockout. We conclude that the modeling paradigm we develop provides a simple tool to investigate the qualitative properties of signaling networks.
    Full-text · Article · Sep 2013 · Frontiers in Physiology
  • Source
    • "The MAPK are activated by phosphorylation and selectively inactivated by MAP kinase phosphatase (MKP) that are either induced or activated by MAPK [15]–[17]. MKP-1 and MKP-3 are selective for extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal protein kinase (JNK) and p38 protein kinase (p38) [16]. Evidence implicates changes in MAPK and MKP activity in both drug-induced behavioral changes and aberrant emotional states. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Depression is one of the most frequent neuropsychiatric comorbidities associated with opiate addiction. Mitogen activated protein kinase (MAPK) and MAPK phosphatase (MKP) are involved in drug addiction and depression. However, the potential role of MAPK and MKP in depression caused by morphine withdrawal remains unclear. We utilized a mouse model of repeated morphine administration to examine the molecular mechanisms that contribute to prolonged withdrawal induced depressive-like behaviors. Depressive-like behaviors were significant at 1 week after withdrawal and worsened over time. Phospho-ERK (extracellular signal-regulated protein kinase) was decreased and MKP-1 was elevated in the hippocampus, and JNK (c-Jun N-terminal protein kinase), p38 (p38 protein kinase) and MKP-3 were unaffected. A pharmacological blockade of MKP-1 by intra-hippocampal sanguinarine (SA) infusion prevented the development of depressive-like behaviors and resulted in relatively normal levels of MKP-1 and phospho-ERK after withdrawal. Our findings support the association between hippocampal MAPK phosphorylation and prolonged morphine withdrawal-induced depression, and emphasize the MKP-1 as an negative regulator of the ERK phosphorylation that contributes to depression.
    Preview · Article · Sep 2013 · PLoS ONE
Show more