Interaction of glutamatergic and adrenergic inputs of cortical neurons during conditioning

ArticleinNeuroscience 76(3):877-90 · March 1997with2 Reads
Impact Factor: 3.36 · DOI: 10.1016/S0306-4522(96)00329-6 · Source: PubMed


    Background and evoked activities of sensorimotor cortex neurons have been examined on learning cats with conditioned placing reaction before, during and after iontophoretic application of synaptically active drugs. It was shown that glutamate exerted not only a direct excitatory effect on the cortical neurons during its application, but also developed modulatory influences on background and evoked impulse activity after cessation of application in the subsequent 10-20 min. Adrenergic influences on the activity of neocortical neurons evoked by application of adrenomimetic drugs were complex and consisted of at least two different types. Noradrenaline depressed background and particularly evoked activity of many neurons through beta1-adrenoreceptors. At the same time, activation of beta2-adrenoreceptors was accompanied by facilitation of background and evoked activity during application and 10-20 min after its cessation, as was shown in experiments with alupent. Co-application of glutamate and alupent improved facilitation of impulse response evoked by conditioned stimuli. It was concluded that beta1- and beta2-adrenergic inputs to neocortical neurons are involved in plasticity changes of glutamate inputs of some cortical neurons.