Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, and Schuppan D. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3: 797-801

Department of Gastroenterology, Klinikum Benjamin Franklin, Free University of Berlin, Germany.
Nature Medicine (Impact Factor: 27.36). 08/1997; 3(7):797-801. DOI: 10.1038/nm0797-797
Source: PubMed


Celiac disease is characterized by small intestinal damage with loss of absorptive villi and hyperplasia of the crypts, typically leading to malabsorption. In addition to nutrient deficiencies, prolonged celiac disease is associated with an increased risk for malignancy, especially intestinal T-cell lymphoma. Celiac disease is precipitated by ingestion of the protein gliadin, a component of wheat gluten, and usually resolves on its withdrawal. Gliadin initiates mucosal damage which involves an immunological process in individuals with a genetic predisposition. However, the mechanism responsible for the small intestinal damage characteristic of celiac disease is still under debate. Small intestinal biopsy with the demonstration of a flat mucosa which is reversed on a gluten-free diet is considered the main approach for diagnosis of classical celiac disease. In addition, IgA antibodies against gliadin and endomysium, a structure of the smooth muscle connective tissue, are valuable tools for the detection of patients with celiac disease and for therapy control. Incidence rates of childhood celiac disease range from 1:300 in Western Ireland to 1:4700 in other European countries, and subclinical cases detected by serological screening revealed prevalences of 3.3 and 4 per 1000 in Italy and the USA, respectively. IgA antibodies to endomysium are particularly specific indicators of celiac disease, suggesting that this structure contains one or more target autoantigens that play a role in the pathogenesis of the disease. However, the identification of the endomysial autoantigen(s) has remained elusive. We identified tissue transglutaminase as the unknown endomysial autoantigen. Interestingly, gliadin is a preferred substrate for this enzyme, giving rise to novel antigenic epitopes.

Download full-text


Available from: Detlef Schuppan, Oct 08, 2014
  • Source
    • "The prevalence of CD in Europe and North America ranges from 1:80 to 1:300 [11] [12] [28] [29] [32] [61] [66]. In the pathogenesis of CD, ap i v o t a lc o n t r i b u t i o ni sm a d eb ya dysregulated immune response directed against tissue transglutaminase type 2 (TG2) which has been identified as a prominent autoantigen of CD [27]. The exogenous trigger of this dysregulated immune response is gluten which is ingested along with grain-containing food. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Celiac disease (CD) is a complex autoimmune disorder in genetically predisposed individuals of all age groups triggered by the ingestion of food containing gluten. A reliable diagnosis is of high interest in view of embarking on a strict gluten-free diet, which is the CD treatment modality of first choice. The gold standard for diagnosis of CD is currently based on a histological confirmation of serology, using biopsies performed during upper endoscopy. Computer aided decision support is an emerging option in medicine and endoscopy in particular. Such systems could potentially save costs and manpower while simultaneously increasing the safety of the procedure. Research focused on computer-assisted systems in the context of automated diagnosis of CD has started in 2008. Since then, over 40 publications on the topic have appeared. In this context, data from classical flexible endoscopy as well as wireless capsule endoscopy (WCE) and confocal laser endomicrosopy (CLE) has been used. In this survey paper, we try to give a comprehensive overview of the research focused on computer-assisted diagnosis of CD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
    Full-text · Article · Feb 2015 · Computers in Biology and Medicine
  • Source
    • "Celiac disease (CD) is an immune-mediated condition that leads to inflammation of the small intestinal mucosa resulting in damage, loss of absorptive villi and ultimately nutrient malabsorption [85]. CD is triggered by gliadin, a protein found in wheat gluten, and other alcohol-soluble proteins (prolamines) contained in barley and rye [86]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a chronic condition that impacts significantly not only on the individual and family, but the disorder also has wider consequences for society in terms of significant costs to the economy. This highly prevalent condition affects approximately 1% of the worldwide population, yet there are few therapeutic options. The predominant treatment strategy for schizophrenia is anti-psychotic medication (with or without additional talking therapy) even though this approach lacks efficacy in managing the negative symptoms of the condition, is not effective in one-third of the patient group and the side effects of the medication can be severe and debilitating. In recent years, a number of pathophysiological processes have been identified in groups of people with schizophrenia including oxidative stress, one-carbon metabolism and immune-mediated responses. A number of studies have shown that these altered physiological mechanisms can be ameliorated by nutritional interventions in some individuals with schizophrenia. This review briefly describes the aforementioned processes and outlines research that has investigated the utility of nutritional approaches as an adjunct to anti-psychotic medication including antioxidant and vitamin B supplementation, neuroprotective and anti-inflammatory nutrients and exclusion diets. Whilst none of these interventions provides a ‘one-size-fits-all’ therapeutic solution, we suggest that a personalised approach warrants research attention as there is growing agreement that schizophrenia is a spectrum disorder that develops from the interplay between environmental and genetic factors. Electronic supplementary material The online version of this article (doi:10.1186/1475-2891-13-91) contains supplementary material, which is available to authorized users.
    Full-text · Article · Sep 2014 · Nutrition Journal
  • Source
    • "One of the most common diseases with autoimmune features that suffers from a lack of animal models is celiac disease (CD). CD is characterized by the presence of specific antibodies recognizing an endomysial autoantigen identified as type 2 transglutaminase (TG2) [25]. The antibody level against TG2 increases upon exposure to gluten, and decreases during the course of a gluten-free diet [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-idiotype antibodies have potential therapeutic applications in many fields, including autoimmune diseases. Herein we report the isolation and characterization of AIM2, an anti-idiotype antibody elicited in a mouse model upon expression of the celiac disease-specific autoantibody MB2.8 (directed against the main disease autoantigen type 2 transglutaminase, TG2). To characterize the interaction between the two antibodies, a 3D model of the MB2.8-AIM2 complex has been obtained by molecular docking. Analysis and selection of the different obtained docking solutions was based on the conservation within them of the inter-residue contacts. The selected model is very well representative of the different solutions found and its stability is confirmed by molecular dynamics simulations. Furthermore, the binding mode it adopts is very similar to that observed in most of the experimental structures available for idiotype-anti-idiotype antibody complexes. In the obtained model, AIM2 is directed against the MB2.8 CDR region, especially on its variable light chain. This makes the concurrent formation of the MB2.8-AIM2 complex and of the MB2.8-TG2 complex incompatible, thus explaining the experimentally observed inhibitory effect on the MB2.8 binding to TG2.
    Full-text · Article · Jul 2014 · PLoS ONE
Show more