Effect of hydration on lung interstitial conductivity response to electrically charged solutions

ArticleinRespiration Physiology 109(3):261-72 · October 1997with2 Reads
DOI: 10.1016/S0034-5687(97)00061-3 · Source: PubMed

    Abstract

    In interstitial segments of rabbit lung, we compared the flow of a solution containing cationic protamine sulfate (0.08 mg/ml) or cationic dextran (0.1%) to that of Ringer or neutral dextran solution. Also compared, were the flow of solutions containing anionic dextran (0.1 or 1.5%) to those containing neutral dextran and the flow of hyaluronidase solution (0.02%) to that of Ringer solution, at mean interstitial pressures (Pm) between -5 and 15 cmH2O. Driving pressure was set at 5 cmH2O. Cationic protamine or cationic dextran-to-Ringer flow ratio increased with Pm (presumably as hydration increased) but in nonedematous interstitium (-5 cmH2O Pm), flow ratio was 1, indicating a viscosity-dependent flow. In contrast, the flow of anionic dextran solution decreased relative to that of neutral dextran; this decrease was constant with hydration, but was greater at the higher concentration of dextran. Interstitial conductivity to the flow of hyaluronidase increased with hydration. However, this behavior was absent after the flow of 1.5% anionic dextran, indicating an inhibitory effect of the higher concentration of anionic dextran on the hyaluronidase response. A negative charge in microvascular filtrate may control fluid clearance in normal interstitium, while a positive charge would enhance clearance only in edema formation.