Critical factors in assessing risk from exposure to nasal carcinogens

ArticleinMutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 380(1-2):125-41 · November 1997with2 Reads
Impact Factor: 3.68 · DOI: 10.1016/S0027-5107(97)00131-0 · Source: PubMed

    Abstract

    Anatomical, physiological, biochemical and molecular factors that contribute to chemical-induced nasal carcinogenesis are either largely divergent between test species and humans, or we know very little of them. These factors, let alone the uncertainty associated with our knowledge gap, present a risk assessor with the formidable task of making judgments about risks to human health from exposure to chemicals that have been identified in rodent studies to be nasal carcinogens. This paper summarizes some of the critical attributes of the hazard identification and dose-response aspects of risk assessments for nasal carcinogens that must be accounted for by risk assessors in order to make informed decisions. Data on two example compounds, dimethyl sulfate and hexamethylphosphoramide, are discussed to illustrate the diversity of information that can be used to develop informed hypotheses about mode of action and decisions on appropriate dosimeters for interspecies extrapolation. Default approaches to interspecies dosimetry extrapolation are described briefly and are followed by a discussion of a generalized physiologically based pharmacokinetic model that, unlike default approaches, is flexible and capable of incorporating many of the critical species-specific factors. Recent advancements in interspecies nasal dosimetry modeling are remarkable. However, it is concluded that without the development of research programs aimed at understanding carcinogenic susceptibility factors in human and rodent nasal tissues, development of plausible modes of action will lag behind the advancements made in dosimetry modeling.