Article

On a Recurrent Neural Network Producing Oscillations

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

A recurrent two-node neural network producing oscillations is analyzed. The network has no true inputs and the outputs from the network exhibit a circular phase portrait. The weight configuration of the network is investigated, resulting in analytical weight expressions, which are compared with numerical weight estimates obtained by training the network on the desired trajectories. The values predicted by the analytical expressions agree well with the findings from the numerical study, and can also explain the asymptotic properties of the networks studied.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Many neural network learning procedures compute gradients of the errors on the output layer of units after they have settled to their final values. We describe a procedure for finding ∂E/∂wij, where E is an error functional of the temporal trajectory of the states of a continuous recurrent network and wij are the weights of that network. Computing these quantities allows one to perform gradient descent in the weights to minimize E. Simulations in which networks are taught to move through limit cycles are shown. This type of recurrent network seems particularly suited for temporally continuous domains, such as signal processing, control, and speech.
Article
Full-text available
The paper proposes a general framework that encompasses the training of neural networks and the adaptation of filters. We show that neural networks can be considered as general nonlinear filters that can be trained adaptively, that is, that can undergo continual training with a possibly infinite number of time-ordered examples. We introduce the canonical form of a neural network. This canonical form permits a unified presentation of network architectures and of gradient-based training algorithms for both feedforward networks (transversal filters) and feedback networks (recursive filters). We show that several algorithms used classically in linear adaptive filtering, and some algorithms suggested by other authors for training neural networks, are special cases in a general classification of training algorithms for feedback networks.
Article
Full-text available
Many neural network learning procedures compute gradients of the errors on the output layer of units after they have settled to their final values. We describe a procedure for finding ∂E/∂wij, where E is an error functional of the temporal trajectory of the states of a continuous recurrent network and wij are the weights of that network. Computing these quantities allows one to perform gradient descent in the weights to minimize E. Simulations in which networks are taught to move through limit cycles are shown. This type of recurrent network seems particularly suited for temporally continuous domains, such as signal processing, control, and speech.
Article
Full-text available
The paper proposes a general framework that encompasses the training of neural networks and the adaptation of filters. We show that neural networks can be considered as general nonlinear filters that can be trained adaptively, that is, that can undergo continual training with a possibly infinite number of time-ordered examples. We introduce the canonical form of a neural network. This canonical form permits a unified presentation of network architectures and of gradient-based training algorithms for both feedforward networks (transversal filters) and feedback networks (recursive filters). We show that several algorithms used classically in linear adaptive filtering, and some algorithms suggested by other authors for training neural networks, are special cases in a general classification of training algorithms for feedback networks.
Article
Full-text available
The exact form of a gradient-following learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have (1) the advantage that they do not require a precisely defined training interval, operating while the network runs; and (2) the disadvantage that they require nonlocal communication in the network being trained and are computationally expensive. These algorithms allow networks having recurrent connections to learn complex tasks that require the retention of information over time periods having either fixed or indefinite length.
Article
The real-time recurrent learning algorithm is a gradient-following learning algorithm for completely recurrent networks running in continually sampled time. Here we use a series of simulation experiments to investigate the power and properties of this algorithm. In the recurrent networks studied here, any unit can be connected to any other, and any unit can receive external input. These networks run continually in the sense that they sample their inputs on every update cycle, and any unit can have a training target on any cycle. The storage required and computation time on each step are independent of time and are completely determined by the size of the network, so no prior knowledge of the temporal structure of the task being learned is required. The algorithm is nonlocal in the sense that each unit must have knowledge of the complete recurrent weight matrix and error vector. The algorithm is computationally intensive in sequential computers, requiring a storage capacity of the order of the third power of the number of units and a computation time on each cycle of the order of the fourth power of the number of units. The simulations include examples in which networks are taught tasks not possible with tapped delay lines—that is, tasks that require the preservation of state over potentially unbounded periods of time. The most complex example of this kind is learning to emulate a Turing machine that does a parenthesis balancing problem. Examples are also given of networks that do feedforward computations with unknown delays, requiring them to organize into networks with the correct number of layers. Finally, examples are given in which networks are trained to oscillate in various ways, including sinusoidal oscillation.
Article
This paper presents some results obtained by a class of feedback neural networks in discrete time. The importance of applying an appropriate network configuration when modeling noisy time sequences is stressed. It is demonstrated that recurrent networks can entertain models with colored noise and that they can perform state estimation. The capability of the networks is illustrated by examples where underlying periodic attractors are learnt by observing noisy trajectories.